
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2006

Application of data mining in scheduling of single
machine system
Xiaonan Li
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Li, Xiaonan, "Application of data mining in scheduling of single machine system " (2006). Retrospective Theses and Dissertations. 1539.
https://lib.dr.iastate.edu/rtd/1539

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1539&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1539&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F1539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/1539?utm_source=lib.dr.iastate.edu%2Frtd%2F1539&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Application of data mining in scheduling 

of single machine system 

by 

Xiaonan Li 

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Major: Industrial Engineering 

Program of Study Committee: 
Sigurdur Olafsson, Major Professor 

Dianne Cook 

Vasant Honavar 

John Jackman 
Sarah M. Ryan 

Iowa State University 

Ames, Iowa 

2006 

Copyright © Xiaonan Li, 2006. All rights reserved 



www.manaraa.com

UMI Number: 3229100 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

UMI 
UMI Microform 3229100 

Copyright 2006 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



www.manaraa.com

i i  

Graduate College 
Iowa State University 

This is to certify that the doctoral dissertation of 

Xiaonan Li 

has met the dissertation requirements of Iowa State University 

Major Professor 

For the Major Program 

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

i i i  

TABLE OF CONTENTS 

LIST OF TABLES v 

LIST OF FIGURES vii 

ACKNOWLEDGEMENTS viii 

ABSTRCT ix 

1 INTRODUCTION 1 

1.1 Data Mining for Scheduling 2 

1.2 Optimal Instance Selection for Scheduling 3 

1.3 Best Instances Analysis 4 

2 LITERATURE REVIEW 6 

2.1 Artificial Intelligence Methods for Scheduling 6 

2.2 Instance Selection Methods and Applications 8 

2.3 Unbalanced Class Problems and Relevant Measures 11 

2.4 Attribute Construction and Selection 14 

2.5 Preference Ordering Learning 17 

2.6 Summary and Discussion 18 

3 DATA MINING FOR SCHEDULING 20 

3.1 Introduction 20 

3.2 Framework for Inductive Learning on Scheduling 21 

3.3 Numerical example 24 

3.4 Decision Trees as Dispatching Rules 29 

3.4.1 Experimental Setup 29 

3.4.2 Attribute Construction and Selection 31 

3.5 Obtaining Structural Insights from Decision Trees 34 

3.6 Summary and Discussion 36 

4 OPTIMAL INSTANCE SELECTION 37 

4.1 Introduction 37 



www.manaraa.com

iv 

4.2 Instance Selection for Scheduling 38 

4.3 Genetic Algorithm Based Instance Selection Methodology 42 

4.3.1 Genetic Algorithm 43 

4.3.2 Genetic Algorithm Based Instance Selection Methodology 44 

4.3.3 Numerical Example 49 

4.4 Scheduling Performance Analysis 56 

4.4.1 Experimental Setup 56 

4.4.2 Tree Models Performance Analysis 58 

4.4.3 Minimum Splitting Size's impact analysis 62 

4.5 Summary and Discussion 65 

5 BEST INSTANCES ANALYSIS 66 

5.1 Introduction 66 

5.2 Analytical Approach 66 

5.3 Numeric Example 68 

5.4 Numerical Experiment Results 73 

5.5 Summary and Discussion 82 

6 CONCLUSION 83 

REFERENCES 86 



www.manaraa.com

V 

LIST OF TABLES 

Table 2.1 Confusion Matrix 12 

Table 3.1: Dispatching list for simple example 24 

Table 3.2 Data set constructed for data mining 25 

Table 3.3 Accuracy of decision trees in replicating dispatching lists 30 

Table 3.4 Accuracy of decision trees with data engineering 32 

Table 3.5 Reduction in size of decision trees 33 

Table 3.6 Attributes discovered by the attribute creation and selection process 35 

Table 4.1 Objective function values by different dispatching rules applied on subsets ....39 

Table 4.2 Training data dispatch list in numerical example for GA based instance 

Selection methodology 49 

Table 4.3 Training data flat File in numerical example for GA based Instance selection 

methodology 50 

Table 4.4 Test data dispatch list in numerical example for GA based instance selection 

methodology 51 

Table 4.5 Test data flat File in numerical example for GA based Instance selection 

methodology 51 

Table 4.6 Best instances set selected by GA based instance selection approach 56 

Table 4.7 Simulation experiments design for scheduling analysis 57 

Table 4.8 Size of decision trees without and with instance selection 59 

Table 4.9 Scheduling performance comparison of decision trees without and with 

Instance selection 60 

Table 4.10 Scheduling performance comparison between EDD and tree model with 

Instance selection 61 

Table 4.11 Scheduling performance comparison between same size of trees with 

Adjusting minimum splitting size and with instance selection 64 

Table 5.1 Best instances selected by GA based Instance Selection approach 69 

Table 5.2 Complete attributes list in the reprocessed data set 69 



www.manaraa.com

vi 

Table 5.3 Reprocessed training data in small numeric example 70 

Table 5.4 Detailed accuracy by class in small numeric example 72 

Table 5.5 Confusion matrix in small numeric example 72 

Table 5.6 Attributes ranks by Relief? evaluator in small numeric example 73 

Table 5.7 Size and detailed accuracy of decision tree models 75 

Table 5.8 Detailed accuracy of tree models at different resample rates 79 

Table 5.9 Top seven attributes selected by ReliefF evaluator 81 



www.manaraa.com

vii 

LIST OF FIGURES 

Figure 2.1 Pseudo code of the Relief algorithm 16 

Figure 3.1 High-level framework for discovering scheduling knowledge 22 

Figure 3.2 Decision tree for dispatching jobs 26 

Figure 4.1. GA based Instance Selection Approach 46 

Figure 4.2 Two point crossover operator in GA Based Instance Selection 48 

Figure 4.3 Decision tree without instance selection in the numerical example 52 

Figure 4.4 Gannt Chart for job dispatch list by tree model without instance selection 53 

Figure 4.5 Decision tree with instance selection in the numerical example 54 

Figure 4.6 Gannt Chart for job dispatch list by tree model with instance selection 55 

Figure 4.7 Average comparisons between EDD, original tree and the tree with instance 

selection 62 

Figure 5.1 Decision tree to learn class attribute Selected in the numerical example 71 

Figure 5.2 Size of decision tree model as the function of the size of best instances set ...76 

Figure 5.3 Accuracy of the decision tree model as the function of the size of best 

instances set 77 

Figure 5.4 F-Measure of decision tree model as the function of the size of best 

Instances Set 78 

Figure 5.5 Decision tree size as the function of the Resample size (Percentage of 

Original data set) 80 

Figure 5.6 Decision tree accuracy as the function of the Resample size (Percentage 

of original data set) 80 

Figure 5.7 F-Measures as the function of the Resample size (Percentage of original 

data set) 80 



www.manaraa.com

viii  

ACKNOWLEDGEMENTS 

I am grateful to a lot of people for this dissertation, which could not have been written 

without their support, help, patience and love of my family, friends and my advisor, Dr. 

Sigurdur Olafsson. Whenever I was in troubles and difficulties, he always presented a 

solution to me with his smile and then I could go further in my research journey. I deeply 

appreciate his generosity, encouragement, mentoring, and research support throughout my 

doctoral studies. 

I would like to express special thanks to my committee members -Dr. John Jackman, 

Dr. Sarah Ryan, Dr. Vasant Honavar and Dr. Dianne Cook. Their thoughtful concern, 

encouragement, and valuable comments were truly helpful and improved my dissertation. 

Especially, I would like to thank my husband Lei for his encouragement, support and 

love during the past few years. I am also deeply grateful to my parents, brother Hong, and 

sister Fang for their encouragement, love, dedication and the many years of support 

during my studies that provided the foundation for this work. I love and thank you with 

all my heart. 

Thank you all! 



www.manaraa.com

ix 

ABSTRACT 

The rapidly growing field of data mining has the potential of improving performance of 

existing scheduling systems. Such systems generate large amounts of data, which is often 

not utilized to its potential. The problem is whether it is possible to discover the implicit 

knowledge behind scheduling practice and then, with this knowledge, we could improve 

current scheduling practice. 

In this dissertation, we propose a novel methodology for generating scheduling rules 

using a data-driven approach. We show how to use data mining to discover previously 

unknown dispatching rules by applying the learning algorithms directly to production 

data. We also consider how by using this new approach unexpected knowledge and 

insights can be obtained, in a manner that would not be possible if an explicit model of 

the system or the basic scheduling rules had to be obtained beforehand. This approach 

involves preprocessing of historic scheduling data into an appropriate data file, discovery 

of key scheduling concepts, and representation of the data mining results in a way that 

enables its use for job scheduling. 

However, direct data mining of production data can at least mimic scheduling 

practices. The problem is whether scheduling practice could be improved with the 

knowledge discovered by data mining. We present an optimization based instance 

selection approach for scheduling to address this problem. In this approach, we use a 

genetic algorithm to find a heuristic solution to the optimal instances selection problem, 

and then induce a decision tree from this subset of instances. The optimal instance 

selection can be viewed as determining the best practices from what has been done in the 

past, and the data mining can then learn new dispatching rules from those best practices. 

Furthermore, data mining is also employed to analyze the selected best instances. 



www.manaraa.com

1 

1 INTRODUCTION 

Production scheduling provides an important role in most manufacturing facilities 

and has received a great amount of attention from both the operations research and 

artificial intelligence communities. There is, however, some discontinuity between 

scheduling practice and the academic research of scheduling models and algorithms. In 

particular, for complex systems it may be difficult in practice to account for all relevant 

aspects in an optimization model or to elicit all relevant scheduling rules directly from an 

expert. In practice, on the other hand, scheduling is often done on an ad-hoc basis that 

does not rely solely on well-defined rules or principles, but also on the intuition and 

experience of the scheduler. When such knowledge is not explicitly captured, any 

model-based approach may fail to account for important considerations. 

Data mining and knowledge discovery is an emerging area of research and 

applications that draw on machine learning and statistical methods to learn previously 

unknown and useful knowledge from examples in large databases. All data mining starts 

with a set of data or a training set, which consists of instances describing the values of 

certain attributes. Data mining has made a significant impact on numerous industries, but 

its function in manufacturing and production scheduling in particular, has only received 

moderate attention to date. Its applicability in this area is evident, however, as the 

strengths of data mining lie where it is difficult or impossible to capture all aspects of a 

system a priori in a model, either because of its complexity or because of incomplete 

existing knowledge, and large volumes of data are generated by the system. Both 

situations commonly exist in production environments, which are often too complex for 

simple mathematical models to adequately capture all essential elements of the system, 

and much of the knowledge of the operation of the system may be implicit and would 

thus not be captured by the mathematical models. 

In this dissertation, we show how data mining on production data can be used to 

capture both explicit and implicit knowledge that is used to create production schedules. 

Integrated with optimization, new optimized instances selection methodology for 



www.manaraa.com

2 

scheduling is proposed to identify the best scheduling practice. Through learning from the 

best data, the induced model can work better as a new dispatching rule, which indicate 

that the current scheduling practice could be improved. Finally we propose to apply data 

mining to analyze the best data selected by optimization-based instance selection 

methodology. 

1.1 Data Mining for Scheduling 

Scheduling is a decision-making process that plays an important role in most 

manufacturing and service industries. It is used in procurement and production, in 

transportation and distribution, and in information processing and communication. The 

scheduling function usually uses mathematical techniques or heuristic methods to allocate 

limited resources to the processing of tasks. A proper allocation of resources enables the 

company to optimize its objectives and achieve its goals. Resources may be machines in a 

workshop, runways at an airport, or crews at a construction set. Tasks may be operations 

in a workshop, takeoff and landings at an airport, or stages in a construction project. Each 

task may have a priority level, an earliest possible starting time, and a due date. The 

objectives may also take many forms, such as minimizing the time to complete all tasks 

or minimizing the worst performance of the schedule. 

Many approaches from operations research and artificial intelligence are employed to 

deal with scheduling problem. But usually, the requirements to know the rules for doing 

scheduling tasks should be known in advance highly limit the successful applications of 

these approaches. Due to the complexities of manufacturing systems, it is not always 

possible to find out those rules about scheduling practice. 

Data mining can be applied successfully where it is difficult or impossible to capture 

all aspects of a system in a model, either because of its complexity or because of 

incomplete existing knowledge, and where large volumes of data are generated by the 

system. Motivated by the strength of data mining, we propose a new framework for 

applying data mining in scheduling to discover new dispatching rules, which can then be 



www.manaraa.com

3 

applied to automate the scheduling function. Furthermore, hidden patterns discovered in 

the schedule generation may add insights not realized by the schedulers themselves, 

suggesting ways in which current scheduling practices can be improved. 

1.2 Optimal Instance Selection for Scheduling 

The idea of this data mining approach to production scheduling is to complement 

more traditional operations research approaches. The data mining approach is particularly 

applicable for large, complex production environments, where the complexity makes it 

difficult to model the system explicitly. However, an implicit assumption is that it is 

worthwhile to capture the current practices from historical data. Furthermore, this 

approach does not seek to directly improve any scheduling performance measure. Thus, 

combining the data mining with some type of optimization approach that improves the 

discovered dispatching rules would be a natural extension. 

There is another assumption that not all historical scheduling data represent good 

scheduling practice. If we apply the decision tree learning algorithm directly to these data, 

then the tree model after learning could not perform well enough as a new dispatching 

rule, because direct data mining of production data can mainly mimic scheduling 

practices. Thus, we propose a hypothesis that if we could identify the subset of good 

instances that represent best scheduling practice, then the induced decision tree model 

will perform well as an experienced scheduler. 

Motivated by this hypothesis, we propose a novel optimization-based instance 

selection methodology for scheduling, by combining data mining with optimization for 

effective production scheduling. In this approach, we use a genetic algorithm to find a 

heuristic solution to the optimal instances selection problem, and then induce a decision 

tree from this subset of best instances. The optimal instance selection can be viewed as 

determining the best practices from what has been done in the past, and the data mining can 

then learn new dispatching rules from those best practices. 



www.manaraa.com

4 

1.3 Best Instances Analysis 

When the best data are selected by optimization-based instance selection method, it is 

interesting to analyze these best data to see why they are good and how to identify them. 

Therefore, we propose an approach to analyze how the best data are selected through 

instance selection procedure. The basic idea of this approach is to apply data mining 

directly to learn the knowledge about best data identification. Therefore, a new target 

concept is defined and accordingly, a new class attribute is introduced. After applying 

data mining algorithm, the performances of the models are analyzed extensively. In 

addition, attributes selection is also employed to identify those factors that are most 

important for instance selection decision process. 

The remainder of this dissertation is organized as follows: 

• Chapter 2 

This chapter reviews the literature related to the dissertation. Methods that have 

been proposed to apply data mining in scheduling, instances selection is discussed 

with some notion on relationship between those works and this dissertation. We 

briefly review some of the closely related research, and in particular, how machine 

learning has been used for scheduling in prior work. 

• Chapter 3 

We propose a new research framework to apply data mining in scheduling. We 

show how to use data mining to discover new dispatching rules, which can then be 

applied to automate the scheduling function. Furthermore, hidden patterns 

discovered in the schedule generation may add insights not realized by the 

schedulers themselves, suggesting ways in which current scheduling practices can 

be improved. 

• Chapter 4 



www.manaraa.com

5 

In this chapter, we present a novel genetic algorithm based optimal instance 

selection methodology for scheduling. Through numerical example and 

experiments, we show that this approach is an effective and efficient to identify 

the best scheduling practice and the model can work as a new dispatching rule 

with much better scheduling performance than optimal heuristic dispatching rules. 

• Chapter 5 

In this chapter, we propose to apply data mining to analyze the best instances 

selected by genetic algorithm based instance selection method for scheduling. We 

formulate the task as a classification problem and report our numerical results to 

evaluate the performance of this approach. 

• Chapter 6 

We conclude with a summary of the contribution of this dissertation and address 

some interesting directions for future research. 



www.manaraa.com

6 

2 LITERATURE REVIEW 

In this section, we will review the literatures related to our research. We first review 

artificial intelligence methods for scheduling, while in the second selection, we will 

discuss instance selection methods and applications. Unbalanced class problems, attribute 

construction and selection and preference ordering learning are also reviewed because 

they are related to our research. 

2.1 Artificial Intelligence Methods for Scheduling 

Artificial intelligence methods for scheduling have received considerable attention 

over the past two decades (see e.g., Aytug et al., 1994; Kanet and Adelsberger, 1987; 

Kusiak and Chen, 1988; Noronha and Sarma, 1991; Priore et al., 2001). Such methods 

were developed in part to address the limitation imposed by the need for an explicit 

model of the system. Examples of such methods include neural networks (Jain and 

Meeran, 1998; Min et al., 1998), induction (Shaw et al., 1992), hybrid approaches (Kim et 

al., 1998; Lee et al., 1997), and unsupervised learning (Bowden and Bullington, 1996; Li 

and She, 1994). Of these various methods, the work that is the most related to the 

dissertation are inductive learning methods that have for example been used to select 

between several dispatching rules. Some of this work is described further below and more 

comprehensive surveys can be found in Aytug et al. (1994) and Priore et al. (2001). 

In an early work, Nakasuka and Yoshida (1992) used empirical data to generate a 

binary decision automatically. The practical data were obtained through iterative 

production line simulations and afterwards the binary decision tree decides which rule to 

be used at decision points during the actual production operations. Later, Wang et al. 

(1995) proposed a scheduling system with inductive learning called the System Attribute 

Oriented Knowledge Based Scheduling System (SAOSS). A simulation model is again 

used to generate training examples. A continuous ID3 algorithm is then employed to 

induce decision rules for scheduling by converting corresponding decision trees into the 

hidden layers of a self-generated neural network. The connection weights between hidden 



www.manaraa.com

7 

units of the self-generated neural network imply the scheduling heuristics, which are then 

formulated into scheduling rules. 

Shaw et al. (1992) also present an inductive learning approach integrated with 

simulation. Similarly to the work mentioned above, simulation model is used to generate 

training examples for a given state of manufacturing process. The simulation runs are 

replicated for each scheduling rule considered. The rule that has the best performance is 

the class value for this set of attributes' values. As for the criteria for best performance, 

the scheduling objectives should be designed in advance. An ID3 algorithm is employed 

to describe the system pattern for selecting each scheduling rule. A decision tree is 

formulated and then it is translated into a set of patterns directed heuristics for scheduling. 

In later extension of this work, Piramuthu et al. (1993, 1994) employ the C4.5 

algorithm, a refinement of the ID3 algorithm with pruning capability. Improvement has 

been done in two aspects: (a) a different decision tree is constructed, for choosing 

chattering threshold values under different patterns. As a result, overreaction to filter 

noise arising from transient patterns will be avoided efficiently; (b) a critic module is 

employed to refine the decision tree. The performance of the system is compared with 

that of individual scheduling rule periodically. If the performance of system degraded, the 

decision tree needs to be refined by generating new training examples to certain over 

generalized concepts. In this way, the system can learn new knowledge incrementally. 

Considering multi-objective flexible manufacturing system (FMS) scheduling 

problem, Kim et al. (1998) propose an integrated approach of inductive learning and 

competitive neural networks. Simulation is applied to generate unclassified training data, 

which then are classified by competitive neural network approach. After classified data 

generation, C4.5 is employed to discover scheduling rules. From the results of 

experiments, they showed that this integrated approach is effective to address complex 

scheduling problem in FMS, but they also mention that system status variables selection 

is necessary. 

The integration of Inductive learning and genetic algorithms is also applied in 

scheduling. Lee et al. (1997) propose the approach to use C4.5 to select the best rule for 



www.manaraa.com

8 

releasing jobs to the system, and then employ genetic algorithms to select the most 

suitable dispatching rule to schedule jobs for each machine in the system. Chiu and Yih 

(1995) give a methodology to use genetic algorithms to search for a set of good training 

examples, and decision tree is applied to learn from selected training data. They also use 

genetic algorithm to do modification on the decision tree model when new examples 

included. 

Taking into account of the benefits of proper learning biases to improve the 

knowledge base, Chen et al. (1999) propose an auto-bias selection approach which can 

determine good feature set and a suitable learning algorithm. They use hybrid approach 

called FSSNCA (Feature Subset Selection based on Nonlinear Correlation Analysis), 

which includes a filter stage and a search stage. In filter stage, a measure of nonlinear 

correlation called dispersion function is applied to do feature selection. The search stage 

is similar to the wrapper method, but the dispersion measure is used to prune the search 

space by feature selection. Through case study, they conclude that the knowledge base 

with the feature subset selected can yield higher accuracy. 

As this sampling of prior work indicates, inductive learning in production scheduling 

has primarily been devoted to issues such as selecting the best dispatching rule by 

learning from simulated data. This, of course, assumes that all the dispatching rules are 

known in advance and that the performance of these rules can be accurately simulated. A 

notable exception to this is the recent work of Geiger et al. (2003), where genetic 

algorithm is used to discover new dispatching rules in a flow shop environment. However, 

to the best of our knowledge data mining applied directly to production data to discover 

new and interesting dispatching rules has not been considered before. 

2.2 Instance Selection Methods and Applications 

Data mining processes include data selection, preprocessing, applying learning 

algorithm, interpretation and evaluation. The first two processes play a critical role in 

successful data mining. Instance selection is recently getting more and more attention 



www.manaraa.com

9 

from researchers and practitioners. There are mainly two perspectives for instance 

selection methods: one is to address the need to reduce storage requirements and 

computational loads [Kuncheva, 1995]; the other perspective is to achieve enhanced 

performance from the learning algorithm through instance selection, as pointed in 

[Dasarathy, 1990]. 

Facing the challenges of enormous amounts of data, Liu and Motoda (1998, 2002) 

worked on scaling down the data to select the relevant data and then present it to a data 

mining algorithm. The authors pointed out that instance selection is an alternative to scale 

up the algorithm, and the combination of the two is a "two edged sword" in data mining 

to deal with massive data sets. According to their research work, the ideal outcome of 

instance selection is a model independent, minimum sample of data that can accomplish 

tasks with little or no performance deterioration. 

As an important part of instance selection, sampling is a procedure that draws a 

sample by random process in which each sample has an appropriate probability 

distribution. There are two basic sampling methods: simple random sampling and 

stratified random sampling. The former is to select a sample of instances such that every 

instance has an equal probability of being chosen. In the latter method, the whole data set 

is first divided into a certain number of subsets, which are non-overlapping and called 

strata. Then simple random sampling is performed in each strata independently and 

respectively. A more advanced sampling method is adaptive sampling, where selecting 

instances in a sample depends on the results obtained from the sample. That is sampling 

and mining are integrated together to take the advantage of better sampling for further 

mining and vice versa. The objective of adaptive sampling is to take the advantage of data 

characteristics in order to get more good results. The idea of adaptive sampling is very 

similar to our optimization-based instance selection for scheduling presented in Chapter 

4. 

Another category of instance selection methods relies on data mining algorithms. 

Hart and Cover (1967) made one of the first attempts to develop an instance selection rule 

and they proposed Nearest Neighbor (NN) learning algorithm. The ideal of NN is to 



www.manaraa.com

10 

select a subset such that every instance of the original training set is closer to an instance 

of the selected subset with the same class than one with different class. Later, more 

extended versions of NN were proposed. Ritter, Woodruff, Lowry and Isenhour (1975) 

presented the Selective Nerarest Nerighbor algorithm, while Gates (1972) proposed the 

Reduced Nearest Neighbor algorithm. In addition, Wilson (1972) introduced the Edited 

Nearest Neighbor algorithm and Tomek (1976) proposed the all k-NN method. 

When there are too much data, NN algorithm could be very slow and very sensitive 

to noise especially in later phases, thus instance-based algorithm is introduced to by Aha 

(1991) to keep only the most important instances and remove the redundant data points. 

Instance-based learning algorithms are considered as a method of knowledge refinement 

and it maintains the instance-case. Smith (1998) proposed an approach to remove harmful 

and useless cases. McSherry (2000) introduced a method, called discover, integrating an 

evaluation strategy of the coverage contributions of a candidate instance in the process of 

build the case set. 

Cano (2003) proposed to an instance selection method based on evolutionary 

algorithm, which is an adaptive method that stems from natural evolution and very useful 

for search and optimization. Through different empirical study, it is shown that with 

evolutionary algorithm, better instance reduction and higher classification accuracy can 

be successfully achieved. Furthermore, the authors pointed out that evolutionary 

algorithm would be prominent and effective tool in research field of the instance selection 

method. This is quite consistent with our conclusion that the genetic algorithm based 

instance selection proposed in this dissertation is an effective and universal instance 

selection method. 

Kim (2006) presented a genetic algorithm based instance selection method in 

Artificial Neural Networks (ANN) for financial forecasting. The evolutionary instance 

selection is employed to reduce the dimensionality of data and may also remove the 

harmful and redundant instances. In addition, evolutionary search strategy is also used to 

find the ideal connection weights between layers in ANN. 



www.manaraa.com

11 

2.3 Unbalanced Class Problems 

Although the majority of learning systems previously designed usually assume that 

training sets are well-balanced, this assumption is not necessarily correct. Indeed, there 

exist many domains for which one class is represented by a large number of examples 

while the other is represented by only a few. If 99% of the data are from one class, for 

most realistic problems a learning algorithm will be hard pressed to do better than the 

99% accuracy achievable by the trivial classifier that labels everything with the majority 

class. 

Japkowicz (2000) discussed the effect of imbalance in a dataset. The author evaluated 

two resampling methods. Random resampling consisted of resampling the smaller class at 

random until it consisted of as many samples as the majority class, which is also called 

oversampling. Random under-sampling was also considered, which involved 

under-sampling the majority class samples at random until their numbers matched the 

number of minority class samples. She noted that both the sampling approaches were 

effective, and she also observed that using the sophisticated sampling techniques did not 

give any clear advantage in the domain considered. 

Ling and Li (1998) combined over-sampling of the minority class with 

under-sampling of the majority class. They used lift analysis instead of accuracy to 

measure a classifier's performance. Lift is a measure of the effectiveness of a predictive 

model calculated as the ratio between the results obtained with and without the predictive 

model. In one experiment, they under-sampled the majority class and noted that the best 

lift index is obtained when the classes are equally represented. In another experiment, 

they over-sampled the minority examples with replacement to match the number of 

negative majority examples to the number of positive examples. The over-sampling and 

under-sampling combination did not provide significant improvement in the lift index. 

Lewis and Catlett (1994) examined heterogeneous uncertainty sampling for 

supervised learning. This method is useful for training samples with uncertain classes. 

The training samples are labeled incrementally in two phases and the uncertain instances 



www.manaraa.com

12 

are passed on to the next phase. They modified C4.5 to include a loss ratio for 

determining the class values at the leaves. The class values were determined by 

comparison with a probability threshold of LR/(LR+1), where LR is the loss ratio. 

In imbalanced class problems, only one measure, like accuracy is usually not enough 

to analyze the performance of the model. Confusion Matrix (Kohavi and Provost, 1998) 

contains information about the actual and predicted classifications done by a 

classification algorithm. Performance of such is commonly evaluated using the data in the 

matrix. The following table shows the confusion matrix for a two class classifier. 

Table 2.1 Confusion Matrix 

Predicted 

Negative Positive 

Actual Negative a b Actual 

Positive c d 

The entries in the confusion matrix have the following meaning in the context of the 

study: 

• a is the number of correct predictions that an instance is negative, 

• b is the number of incorrect predictions that an instance is positive, 

• c is the number of incorrect predictions that an instance is negative, 

m d is the number of correct predictions that an instance is positive. 

The accuracy (AC) is defined as the proportion of the total number of predictions that 

were correct. It is determined using the following equation: 

accuracy(AC) = a + d (2.1) 
a+b+c+d 

The recall or true positive rate (TP) is the proportion of positive cases that were 

correctly identified, as calculated using the following equation: 

rgca//(7?) = (2.2) 



www.manaraa.com

13 

The precision (P) is the proportion of the predicted positive cases that were correct, 

as calculated using the following formula: 

precision(P) = ^ (2.3) 
6 + d 

The false positive rate (FP) is the proportion of negative cases that were incorrectly 

classified as positive, as calculated by the following formula: 

= (2.4) 
a + b 

The true negative rate (TN) is defined as the proportion of negative cases that were 

classified correctly, as calculated by the equation: 

TN = (2.5) 
a + b 

While the false negative rate (FN) is the proportion of positive cases that were 

incorrectly classified as negative, as calculated using the equation: 

FN =—— (2.6) 
c + d 

When there is imbalance class, the accuracy determined using equation (2.1) may not be 

an adequate measure. Other performance measures account for this by including recall 

(TP), precision (P) or a product of these two measures: for example, F-Measure defined 

by Lewis and Gale (1994) as in the following equation. 

P2*P + TP 

Using precision, recall, and F-Measure, we analyze the performance of the models 

after applying decision tree algorithms to the reprocessed data in the next sections. 



www.manaraa.com

14 

2.4 Attribute Construction and Selection 

Data engineering plays a critical role in constructing more accurate models, building 

more interprétable models, and in providing insights into which factors are most 

important in making the scheduling decisions. Specifically, the attributes that are recorded 

as part of the raw production data may not be the attributes that are the most useful for the 

data mining itself. Thus, new attributes creation must be considered (Chen and Yih, 1996). 

In some cases this could be done manually using intuitive processes, but it can also be 

discovered automatically. 

Attribute selection using frequent itemset generation was introduced in the seminal 

paper by Agrawal et al. (1993) and this approach has been found to be useful in many 

areas of knowledge discovery. In this context, an item is an attribute value pair, that is an 

attribute along with one of its possible values, and an itemset is a simply a set of items. 

An item set is called frequent if it occurs some minimum number of times in the database, 

that is, meets the minimum support. It is possible to use such frequent itemset generation 

to construct new attributes that are helpful for classification learning (Lesh et al., 1999; 

Deshpande and Karypis, 2002). With this approach, new composite attributes are added 

based on attributes that occur frequently together, which allows the subsequent learning 

algorithm to use conjunction of attribute values. For example, if itemsets involving 

processing time of job 1 ,p l ,  and processing time of job 2, p 2 , occur frequently together 

then we attempt to construct new composite attribute using this pair with four basic 

arithmetic operations: p x -  p 2 ,  p l + p 2 ,  Py  , and p x -  p 2 .  
/ PI 

A problem of estimating the quality of attributes (features) is an important issue in 

data mining. Normally, attribute selection is employed to address the problems that there 

are many irrelevant, but noisy attributes which provide very little information. 

Accordingly, the objective of attribute selection is to choose a small subset of attributes 

that ideally are necessary and sufficient to describe the target concept. However, there is 

another benefit of attribute selection is that we can sometimes generate some interesting 

insights from the attributes selected. One example of such insights is that which kind of 



www.manaraa.com

15 

factors are the most important regarding to the target concept of interests. Therefore, 

attributes selection is a useful and necessary procedure to be employed to analyze the best 

data selection. 

Taking into account whether or not feature selection process embeds a learning 

algorithm, we can classify them into one of both filter and wrapper approaches [John, 

Kohavi and Pfleger, 1994]. The filter approach methods use a fitness function for 

evaluating feature subsets rather than using a learning algorithm. The most widely known 

existing algorithms that fall into the filter approach are FOCUS [Almuallim and 

Dietterich, 1994], Relief [Kira and Rendell, 1992] and its variants [Kononenko, 1994], 

CFS (Correlation Based Feature Selection) [Hall, 1998], and cross-entropy filter [Roller 

and Sahami, 1996]. Other algorithms except FOCUS stated in the previous subsection 

will be dealt with in main chapters later in detail. 

On the other hand, the wrapper approaches use a learning algorithm in the feature 

selection process. The wrappers usually provide better accuracy but are computationally 

more expensive than the filters [Raman and Ioerger, 2002]. Kohavi and John (1997) used 

the best first search for a wrapper approach. Many algorithms stated previously such as 

genetic algorithm [Yang and Honavar, 1998] and LVW [Liu and Setiono, 1996] 

incorporate with a learning algorithm for evaluating feature subsets. 

The ReliefF algorithm is an extended version of Relief algorithm, which is developed 

by Kira and Rendell (1992) for estimating the quality of attributes that consider 

interdependency between attributes. The basic idea of Relief algorithms is, as shown in 

Figure 2.1, to estimate the quality of attributes according to how well their values 

distinguish neighbor instances from different classes by having different values and 

having the same values for neighbor instances from the same class. 

Given a randomly selected instance f-, the algorithm searches for its two nearest 

neighbors, one from the same class (nearest hit A) and the other from a different class 

(nearest missm). The quality measure Q[AJ is updated for all attributes A depending 

on their values for r t  ,h, and m . If instances r:  and A have different values in attribute 



www.manaraa.com

16 

A, then the attribute A separates two instances with the same class, which is not desirable, 

and then Q[AJ is decreased. On the other hand, if instances r, and m have different 

values in attribute A, then the attribute A separates two instances with the different class, 

which is desirable, and then Q[AJ is increased. 

for i — 1 to a 

set Q[AJ= 0.0 

for / = 1 to num 

randomly select an instance r; 

find nearest hit h and nearest miss m 

for j = 1 to a 

Q[Aj ] = Q[Aj ] - diff {A j ,r,h)/ num + diff (Aj ,r,m)l num 

Figure 2.1 Pseudo code of the Relief algorithm. 

The Relief algorithm randomly selects num instances, where num is a user-defined 

parameter and usually set to 10 that has been believed to perform well in many situations. 

In the pseudo code of the Relief algorithm, for a discrete attribute, diff (Attribute, 

Instance 1, Instance2) is 0 if the values are equal, otherwise it is 1, while for continuous 

attribute the difference is the actual difference normalized to the interval [0, 1]. 

The ReliefF algorithm, developed by Kononenko (1994) is not limited to two class 

problems, is more robust and can deal with incomplete and noisy data. Similarly to Relief, 

ReliefF randomly selects an instance rj, but then searches for k of its nearest neighbors from the 

same class, and also k nearest neighbors from each the different classes. Q[At ] is the quality 

measure and will be updated as the follow: 

Q[Aj ] = Q[Aj ] - diff (A j ,r,h)/ num + [P(C) *diff (Ay, r, f(C))] / num 
C*class(r)  

(2 8) 



www.manaraa.com

17 

Thus, it can estimate the capability of attributes to distinguish each pair of classes 

regardless of which two classes are closer to each other. 

2.5 Preference Orderings Learning 

Due to the increasing trend to personalization or products and services e-commerce, 

recommender systems, in various fields, preference learning has been received 

considerable attention in machine learning community (Goldberg et al, 1992; Herbrich et 

al., 1998; Kautz 1998; Chajewska et al. 2001; Aiolli and Sperduti, 2004). A key point in 

these applications is to discover and capture the individual or customer's preferences. 

Chu and Ghahramani summarized that there are cases for preference learning: label 

preference learning and instance preference learning. 

In label preference learning, the preference relations are over a predefined set of 

labels for each instance. Label preference learning problems can viewed as multi-class 

problems. Furnkranz and Hullermeier (2002) discuss a technique, called round robin 

classification, for handling multi-class problems with binary classifiers by learning one 

classifier for each pair of classes. The authors later (2003) propose to use a set of pairwise 

preferences between labels (classes) to predict a total order, a ranking, of all possible 

labels for a new training example. They seek to induce a ranking function that maps 

instances to rankings over a fixed set of decision labels, similarly to a classification 

function that maps instances to single labels. The authors (2003) also investigate different 

ranking procedures through empirical results. Har-Peled et al. (2002) introduce constraint 

classification to address multi-classification and ranking problems based on binary 

classifiers. They propose to label each instance with a set of constraints relating multiple 

classes. Each such constraint specifies the relative order of two classes for this instance. 

The goal is to learn a classifier consistent with these constraints. Learning is achieved by a 

simple transformation mapping each example into a set of examples (one for each 

constraint) and the application of any binary classifier on the mapped examples. Chu and 

Ghahramani (2005) develop a Gaussian process algorithm with a new likelihood function 



www.manaraa.com

18 

for preference learning problems. 

In instance preference learning, more related to our research work, a collection of 

instances are associated with a complete or partial order relation. The training data are a set 

of pairwise preference between instances, rather than each instance assigned a single class 

in standard supervised learning. The learning task is to identify the underlying ordering of 

the instances involved from these pairwise preferences. Haddawy et al. (2003) apply neural 

network to learn from training data which are pairwise comparisons of instances. Cohen et 

al. (1999) propose a two-stage approach to learn how to order instances. In the first stage, a 

preference function is learned and this function returns a numerical measure of how certain 

that one instance should be ranked before another instance. In the second stage, the learned 

preference function is evaluated by applying it to order a set of new instances. 

In our research context, we consider job scheduling problems, where the original 

production data are about jobs accompany with their sequences in the schedule. Our 

problem is a type of instance preference learning problem. The goal of learning here is to 

learn how jobs are scheduled, which is a kind of preference learning problem. Instead of 

learning the ranking function directly, we first transform the original jobs dispatched list 

into pairwise comparison between any two jobs a with a class variable that reveal whether 

the first job is scheduled earlier than the second one. Then decision tree algorithm is 

employed to learn the pairwise preference data. 

2.6 Summary and Discussion 

In this chapter, we addressed that many researchers proposed to apply artificial 

intelligence approaches in complex scheduling context. In general, these methods focus 

more on how to select an already known dispatching rule at a given time point, and thus, 

those dispatching rules would have to be known beforehand. The issue of getting the 

insights of how direct schedules decisions are made has not been explored thoroughly. 

Furthermore, we discussed research work on instance selection by many researchers. 

The previous methods are very unique in themselves as each has different requirements 



www.manaraa.com

19 

and underlying principles. But a universal and effective model or method of instance 

selection has not been explored. Therefore, it is expected that more research in this field 

would be proposed. 

In addition, we reviewed unbalanced data problems, which occur normally in the 

applications of inductive learning. Related resampling strategies and suitable performance 

measures are addressed in terms of tackling unbalance data problems. The prior related 

research work to attribute selection, one of the important data mining issues is also 

reviewed. Due to the particular characteristics of scheduling data, we reviewed related 

research work on preference learning. In preference learning, we review literature on 

label preference learning and instance preference learning respectively. 



www.manaraa.com

20 

3 DISCOVERING DISPATCHING RULES 

3.1 Introduction 

As indicated by the literature in Chapter 2, significant amount of work has been 

carried out related to the use of artificial intelligence in scheduling. Most of these 

approaches and applications focus on how to select the best dispatching rule from a 

certain candidate set. That is to say that there is an assumption that those candidate 

dispatching rules have to been known in advance. In reality, however, it is usually not 

possible to get background knowledge about the production scheduling due to the 

complexity of the system or lack of explicit scheduling knowledge. Thus, the problem of 

how to discover knowledge about scheduling practice from production data when there is 

little background information available about the system need to be addressed and 

researched. In this chapter we propose a data driven approach to apply data mining 

directly to production data to discover previously unknown meaningful patterns, such as 

new and interesting dispatching rules and identification of priority jobs. We show how to 

use this approach to discover key concept and useful knowledge from production data 

without background information about the system. 

The potential benefits of this approach include: 

• The implicit knowledge of expert schedulers is discovered and can be used to 

generate future schedules with little or no direct involvement of such experts. 

• Existing scheduling practices are generalized into explicit scheduling rules. 

These rules can then be applied to both situations that have occurred before and to new 

scenarios. 

• In addition to the predictive scheduling rules that allow for dispatching of jobs, 

structural knowledge may be gained that leads to new rules that improve scheduling 

performance. 

The remainder of this chapter is organized as follows. In Section 3.2, we show how 

data mining algorithm can be used to learn dispatching rules and give a general 



www.manaraa.com

21 

framework for a knowledge discovery in production data process. In Section 3.3, using a 

simple numerical example, we show how this approach works and how knowledge is 

discovered. In Section 3.4 we evaluate how well such decision trees perform as 

dispatching rules, and consider the data engineering issue of attribute construction and 

selection. In Section 3.5, we show how this both improves the performance of the 

subsequent data mining models and provides important insights into how scheduling 

decisions are made. Finally, Section 3.6 contains some concluding remarks and future 

research directions. 

3.2 Framework for Inductive Learning on Scheduling 

In this section, we propose a general framework for knowledge discovery in 

production data. Thus, from the data mining perspective, we specify the target concept to 

be learned to be priority jobs, machine allocation patterns, and a dispatching rule, 

according to different types of scheduling decisions. In particular, for issue of learning 

priority jobs, we want to determine where the job considered is a priority job or not, based 

on its characteristics. If the target concept is to learn machine allocation patterns, we 

compare two machines and decide if one of them should process the current released job 

or not, considering the relevant characteristics of the two machines and also the features 

of the released job. When learning a dispatching rule, given two jobs we want to learn to 

determine which job should be dispatched first. This knowledge would allow us to 

dispatch the next job at any given time and create dispatching lists for any set of jobs. 

Note that we do not need to predict the starting time of each job but simply when we 

compare two jobs, which job should be processed first. Given this target concept the 

framework has two main phases: a) data preparation including aggregation, instance 

selection, attribute construction, and attribute selection, and b) model induction and 

interpretation (see Figure 3.1). 

The initial preparation of data is highly significant since to mine any useful 

knowledge from the raw production data it must typically be transformed considerably. 



www.manaraa.com

22 

For data mining, the database should be represented as a flat data file where the columns 

represent the attributes of the data and each row of the file represents one piece of 

information: an example from which we can learn. We refer to each such an example or a 

row in the file as an instance. The raw production data that is available is likely to be in 

various formats. These data could for example include job dispatch list, work schedules, 

bill of materials, and so forth. All of these data sources must be combined into a single 

flat file. 

Sources of Raw 

Production Data 

Aggregate 

Data 

Attribute Construction 
i 

Basic 
L 

Composite 

Attributes Attributes 

1 r 

Instance 
Selection 

Attributes^ Instances 
Attribute Selection 

Relevant 
Attributes 

Important 
Attributes Prepared Data 

File 

Decision Tree 
Induction Q 

6°à 6°à 

Scheduling 
Rules 

-» 

Structural Insights 
- Attributes important 

to scheduling decisions 

New scheduling 

rules discovered 

Scheduling Knowledge Discovered 
Accurate dispatching rules generated from decision tree 

Understanding of scheduling decisions (factors, rules) 

Figure 3.1 High-level framework for discovering scheduling knowledge 



www.manaraa.com

23 

There are various data sources that could include released jobs' information, data 

with respect to machines layout and configuration, data sources of MRP systems and 

demand details from customers. Beyond the initial combination of these various data 

sources into a single database, the engineering of this database plays a critical role in the 

usefulness of the knowledge discovered. The fact is that not all the instances represent 

good scheduling practice. The existence of those instances generated from bad scheduling 

decisions will prevent us gaining key knowledge of good scheduling practice after 

learning. Therefore, effective instance selection approach is necessary to be applied on 

aggregate data and only those good examples are selected for learning. It is indeed 

unlikely that the attributes that are recorded as part of the raw production data are the 

attributes that are the most useful for data mining. Thus, new attributes creation must be 

considered using both intuitive processes and automated learning. On the other hand, 

using attribute selection to eliminate certain redundant and irrelevant attributes is also 

critical to the effectiveness of the subsequent model induction. Attribute selection also has 

an inherent value in that insightful structural knowledge may be obtained by selecting 

which attributes are important, that is, which factors most influence the scheduling 

decision. 

After the data file has been constructed a learning algorithm is applied to induce a 

predictive model for the target concept. There are many ways in which such learning can 

be achieved, including using decision tree induction, statistical learning, neural networks, 

and support vector machines. For our framework, we focus on transparent methods, as we 

believe that black-box models that are difficult or impossible for the user to comprehend 

are not likely to be used effectively in an actual production environment. In particular, 

we focus on using decision trees and decision rules derived from such trees. 

The decision tree induced using the learning algorithm can be applied directly as a 

predictive model to predict the target concept. Firstly, if the target is a priority job, the 

tree will predict the given job is a priority job or not, and also which kind of factors are 

influential for the decision will be revealed by the tree. Secondly if the target concept is to 

learn machine allocation scheme, the tree will, according to the characteristics of the 



www.manaraa.com

24 

current released job, compare any two machines and decide whether the job should be 

processed by one of them or not. On the other hand, if the target concept to learn is a 

dispatching rule, the tree will, given any two jobs, predict which job should be dispatched 

first and can be thought of as a new, previously unknown, dispatching rule. In addition to 

the prediction, decision trees and decision rules often also reveal insightful structural 

knowledge that can be used to further enhance the scheduling decision. 

3.3 Numerical example 

To illustrate the framework described in the last subsection we now consider a simple 

numerical example. Here, the target concept is to learn a dispatching rule. We assume that 

the dispatching list shown in Table 3.1 has been used for processing five jobs on a certain 

single machine system. 

Table 3.1 Dispatching list for simple example 

Job ID Release Time Start Time Processing Completion 
Time Time 

J5 0 0 17 17 

J1 10 17 15 32 

J3 18 32 20 52 
J4 0 52 7 59 

J2 30 59 5 64 

Now assume that we do not know how jobs were scheduled but still wish to construct 

an automatic system to dispatch new jobs according to the same logic. We thus need to 

induce from the data above some rule that can be used to dispatch jobs and therefore our 

target concept to be learned will be a simple dispatching rule. (Note that the actual rule 

used to create the data in the example is to dispatch the jobs is longest processing time 

first for all jobs that have been released, but this is considered unknown.) 

The first step of the framework is data file construction. Given the target concept, any 

such data file should have a class attribute called JoblFirst, which can take two values: 

yes or no. Thus, when all the attributes are specified for two jobs, job 1 and job 2, the 



www.manaraa.com

25 

objective is to predict if job 1 comes first (class value 'yes') or not (class value 'no'). In 

addition to make the prediction, the model should ideally reveal some structural 

knowledge about the production system that reveals why one job is dispatched ahead of 

another. In this example, that knowledge should be that jobs are dispatched if it is the 

longest job of those that have been released. With this in mind, we construct the initial 

data set as shown in Table 3.2. 

Table 3.2 Data set constructed for data mining 

Jobl ProcessingTimel Release 1 Job2 ProcessingTime2 Release2 Job 1 ScheduledFirst 

J1 15 10 J2 5 30 Yes 

J1 15 10 J3 20 18 Yes 

J1 15 10 J4 7 0 Yes 

J1 15 10 J5 17 0 No 

J2 5 30 J3 20 18 No 

J2 5 30 J4 7 0 No 

J2 5 30 J5 17 0 No 

J3 20 18 J4 7 0 Yes 

J3 20 18 J5 17 0 No 

J4 7 0 J5 17 0 No 

As usually for knowledge discovery data files, due to the requirement that each line, 

or instance, be an example of the concept to be learned that is independent of all other 

instances, this file contains some inefficiency. However, it is clear that once it has been 

designed, it is not difficult to construct this data automatically from the dispatching list in 

Table 3.1. This straightforward transformation will result in dependency of instances in 

the training set shown in Table 3.2. The assumption of independence is among the most 

enduring and deeply buried assumptions for machine learning methods. But this 

assumption is often contradicted in many relational data sets in reality, like in our case. 

Neville at el. (2003) address the challenge of learning probabilistic models in relational 

data, where the traditional assumption of instance is violated. However, in this paper, the 



www.manaraa.com

26 

authors focus on the dependency among attributes, while in our problems, dependency is 

among instances. 

Job I Lunger 

No Yes 

No No Yes Yes 

> -1 < - !  

No 

No 

Figure 3.2 Decision tree for dispatching jobs 

As discussed above, attribute construction and selection is an essential element of 

being able to successfully mine scheduling patterns from the data. However, for 

illustration purposes we first apply the well-known C4.5 decision tree algorithm of 

Quinlan (1993) to the data in Table 2 directly. For brevity, we omit the actual tree, but it 

corresponds to the following classification rules, which in this case is a set of dispatching 

rules: 

If ProcessingTimel < 7 then dispatch Job 2 first. 

If ProcessingTimel > 7 and ProcessingTime2 < 7 then dispatch Job 1 first. 

If ProcessingTimel > 1 and ProcessingTime2 > 7 then dispatch Job 1 first 

These scheduling rules dispatch all but one of the training instances correctly, that is, 

it would replicate the dispatching list in Table 3.1 almost exactly (the order of Job 1 and 

Job 3 is reversed) for a dispatch order of J5-J3-J1-J4-J2. Since there are ten instances, this 

corresponds to the model having 90% accuracy. However, it is also quite limited in the 



www.manaraa.com

27 

amount of structural knowledge or insights that can be obtained. 

In order to obtain more meaningful decision tree, and hence dispatching rules, a 

better data file must be constructed before the decision tree induction. Hence, we add two 

new attributes, ProcessingTimeDifference and ReleaseDifference, which are defined as 

follows: ProcessingTimeDifference = ProcessingTimel - ProcessingTimel and 

ReleaseDifference = Release 1 - Release2. We also add two attributes that indicate which 

job is longer and which is released first: Jobl Longer and JoblReleasedFirst, that both 

take values yes or no. We then apply the same decision tree algorithm again, resulting in 

the decision tree shown in Figure 3.2. Note that a 'Yes' in a leaf node implies that Job 1 

should be dispatched first, and vice versa. The decision tree, or alternatively the 

corresponding decision rules, can be used to directly dispatch new coming jobs. Given 

any two jobs a selection can be made which job should be dispatched first and hence, a 

dispatch list could be generated for any given set of jobs that has been released into the 

system 

In addition to being used for prediction, in our framework we also look at what 

previously unknown structural information can be discovered (see Figure 3.1). Looking 

at the decision tree we note that there are two easy classification cases. If Job 1 is both 

longer and is released first, then it is dispatched first (leaf node furthest to the left). Vice 

versa if neither holds then Job 2 is dispatched first (leaf node furthest to the right). The 

ambiguous cases occur in between and in those cases the decision as to which job is 

dispatched first are determined by the difference in processing time between the two jobs. 

These rules clearly reveal more structural knowledge and get to the point by focusing on 

the processing time difference. In particular, note that the first rule says that if the 

processing time of Job 1 is much smaller than that of Job 2, then Job 2 should be 

dispatched first even if Job 1 is released first. What counts as being 'much smaller' is 

determined by the data, and in particular how much delay a late release date can possibly 

cause for this particular system. Thus we have discovered the following nuggets of 

information: 

- If a job is both longer and released ahead of another job it should be dispatched first. 



www.manaraa.com

28 

- A job that is released first into the system should wait for an anticipated longer job to be 

available if that job is much longer, specifically if its processing time is 5 to 8 units 

longer. 

According to the second rule, the machine may be idle for a period of time, which is 

allowed in our context. It may be informed that there is a job with higher priority will come 

and the machine needs to wait to perform this more important job. 

Such observations can then be assessed to see if scheduling practices should be 

changed. Should longer jobs be favored? Is it justified to idle machines to wait for those 

longer jobs? How should a 'much longer' job be defined? 

We content that in an actual production situation, such observations could result in 

significant improvements. Indeed, more may be discovered than could be found out even 

if the dispatcher could accurately describe the formal process. Here the dispatcher would 

simply state that jobs are dispatched according to LPT for all jobs that have been released. 

The induction algorithm is learning from examples that use this rule and the processing 

time and release time data. Thus, the induced model can take into account the possible 

range of processing times, and the largest possible delay that can be caused by a job not 

being released, and thus discovering new structural patterns that may not be explicitly 

known by the dispatcher. 

Despite its simplicity, this example lends itself to numerous observations. It is clear 

that data mining algorithms, and in particular decision trees, can be used to extract 

knowledge concerning scheduling concepts from production data such as dispatch lists. 

Such knowledge can be both predictive, as in determining which of two jobs should be 

dispatched first, and descriptive, for example by revealing why a job should be dispatched 

first. However, discovering descriptive knowledge that may be further used to improve 

schedule performance is not a trivial matter, and as illustrated by the example depends on 

the representation of the data. Thus, we infer that to mine for information in scheduling 

data, the data should be represented in ways that are significantly different from 



www.manaraa.com

29 

traditional scheduling data outputs. Furthermore, a careful construction of new attributes 

to represent the scheduling data can greatly enhance the value of the models obtained, in 

particular with respect to the structural knowledge that is gained. 

3.4 Decision Trees as Dispatching Rules 

The example in section 3.2 motivates that decision tree induction can be used to learn 

novel dispatching rules. In this section, we evaluate the quality of such dispatching rules 

more extensively through a series of simulation experiments, which we did in our 

previous paper (Li and Olafsson, 2003). 

3.4.1 Experimental Setup 

This evaluation is based on data created using four simple and well known 

dispatching rules for a single machine problem, namely, weighted earliest due date 

dispatched first (EDD), weighted shortest processing time dispatched first (WSPT), 

minimum slackness dispatched first (MS), and earliest release date dispatched first(ERD). 

Corresponding to each of these rules, there is a priority index Ij"LE ( p], r;, dj, w] ) that is 

a function of the basic characteristics of the job, that is, the processing time (pj), release 

time (r, ), due date ( d] ), and weight ( w;). One thing needs to mention: when apply EDD 

dispatching rule, weight is considered to dispatch jobs. That is to say, the job with earlier 

due date and higher weight will be dispatched earlier. This is not only limited to this 

experiment, but is employed in any experiment related to EDD in our research context. 

As in Section 3.2, the basic data pj, r;, d} and w;. are first generated for a set of jobs 

7=1,2,...,7?2. We use simulation to generate data for,rt,d} and w.. Law and Kelton 

(2000) explained how to generate random variants. We employ exponential distributions 

with different parameters to generate release time r; and due date dj, keeping the mean of 

^greater than the mean off:. First, random numbers are generated and then use the 



www.manaraa.com

30 

exponential distribution inverse transformation formula to generate random variants for 

r) and d]. We employ Weibu distribution to generate processing time p}. The process is 

similar as before, random numbers are generated and transformed into Weibu variants 

through Weibu inverse transformation formula. As for weight w;., first generate random 

numbers, and if the number is less than 0.3 then assign w - to 1 ; if the number is between 

0.3 and 0.5 then assign w;. to 3; if the number is between 0.5 to 0.8 then assign wy to 5; 

otherwise assign w. to 7. 

In these experiments the total number of jobs used ranges from m=120 to m=200. 

Given the basic data, the jobs are ordered according to the appropriate priority 

indexIjULE (, r;, dj, wy ) determined by different dispatching rules, with the job with 

the lowest index being first, and so forth. This results in a dispatching list similar to Table 

3.1. This dispatching list is then transformed into a flat file similar to the one in Table 3.2, 

except that due dates and weights of each job are also included. As before the concept to 

be learned is which of two jobs is dispatched first. All experiments are replicated four 

times with four different data sets with same distribution for each variable, which was 

found to be sufficient due to relatively low variability in the knowledge discovery 

process. 

We start by addressing the question of whether the decision tree algorithm can 

accurately replicate the dispatching list generated by the rule. Table 3.3 shows the results 

when the C4.5 decision tree algorithm is applied to each of the four flat files. 

Table 3.3 Accuracy of decision trees in replicating dispatching lists 

Average Standard Minimum Maximum 
Rule Accuracy (%) Deviation Accuracy (%) Accuracy (%) 
EDD 96.18 0.28 95.9 96.5 

WSPT 96.30 0.36 95.8 96.3 
MS 98.20 1.05 97.2 99.3 
ERD 99.20 0.24 98.9 99.1 



www.manaraa.com

31 

It is clear that in each case the decision tree algorithm accurately discovers how the 

jobs were dispatched by the particular rule, although the EDD and WSPT rules appear to 

slightly more difficult to discover. This supports the claim made based on the example in 

Section 3.3, but as in that example, further improvements can be made by engineering the 

data. 

3.4.2 Attribute Construction and Selection 

Data engineering plays a critical role in constructing more accurate models, building 

more interprétable models, and in providing insights into which factors are most 

important in making the scheduling decisions. Specifically, the attributes that are recorded 

as part of the raw production data may not be the attributes that are the most useful for the 

data mining itself. Thus, new attributes creation must be considered. In some cases this 

could be done manually using intuitive processes such as those illustrated in the example 

in Section 3.2 above, but now we show how such new attributes can be discovered 

automatically. 

We use frequent itemset generation (Agrawal et al., 1993) approach to create new 

attributes. In this context, an item is an attribute value pair, that is an attribute along with 

one of its possible values, and an itemset is a simply a set of items. An item set is called 

frequent if it occurs some minimum number of times in the database, that is, meets the 

minimum support. With this approach, new composite attributes are added based on 

attributes that occur frequently together, which allows the subsequent learning algorithm 

to use conjunction of attribute values. For example, if itemsets involving processing time 

of job 1, pl, and processing time of job 2, p2, occur frequently together then we attempt 

to construct new composite attribute using this pair with four basic arithmetic operations: 

In addition to creating new attributes, using attribute selection to eliminate certain 

attributes is also critical to the effectiveness of the subsequent model induction. Attribute 

selection in general is an important part of the knowledge discovery for numerous reasons. 



www.manaraa.com

32 

It can be used to eliminate redundant and irrelevant attributes from a data set, resulting in 

a dimensionality reduction that reduces the learning time needed for induction algorithms 

that are applied to the data set, and in many cases also results in better (that is, more 

accurate) predictive models. Careful attribute selection can improve the scalability of a 

data mining system as the induction is usually much faster with fewer attributes, and 

finally, attribute selection also has an inherent value in that insightful structural 

knowledge may be obtained by selecting which attributes are important. 

To illustrate how the engineering of the data improves the performance of the decision 

tree models, we compare and analyze the difference between decision trees before and 

after data engineering (attribute construction and selection) in accuracy and size. Table 

3.4 shows the accuracy of the decision trees after attribute construction and selection for 

the same data sets as those reported in Table 3.3. 

Table 3.4 Accuracy comparison of decision trees with and without data engineering 

Rule 
Data 
Set 

Accuracy 

(Original 

Tree) 

Accuracy 

(Attribute 

construction 

and attribute 

selection) 

Difference 

Average 

of 

Difference 

Standard 

Deviation, 

of 

Difference 

Confidence 

Interval 

(95%) of 
Difference 

EDD 1 96.00% 99.00% 3.00% 
2 96.50% 99.20% 2.70% 

2.93% 0.22% 
(2.71%, 

3 96.30% 99.10% 2.80% 
2.93% 0.22% 

3.14%) 
4 95.90% 99.10% 3.20% 

WSPT 1 96.30% 98.70% 2.40% 

2 96.50% 99.10% 2.60% 
2.55% 0.50% 

(2.06%, 

3 96.60% 98.60% 2.00% 
2.55% 0.50% 

3.04%) 

4 95.80% 99.00% 3.20% 
MS 1 97.80% 97.80% 0.00% 

2 99.30% 99.20% -0.10% 
0.23% 0.40% 

(-0.17%, 

3 98.10% 98.30% 0.20% 
0.23% 0.40% 

0.62%) 

4 97.20% 98% 0.80% 

ERD 1 98.90% 99.90% 1.00% 

2 99.10% 99.90% 0.80% 
0.70% 0.35% 

(0.35%, 

3 99.40% 99.90% 0.50% 
0.70% 0.35% 

1.05%) 

4 99.40% 99.90% 0.50% 



www.manaraa.com

33 

From Table 3.4, we can see that there is a significant difference in accuracy after 

performing data engineering, apart from MS experiments. Positive upper and lower 95% 

confidence levels indicate improvements in accuracy brought by attribute construction 

and selection, except for MS. The reason why there is no significant improvement on 

accuracy for MS cases is that the new derivative attributes created and selected do not 

contribute as much as other new derivative attributes do in other experiments. 

However, as noted before the primary benefit of attribute creation and selection may 

not be the improved accuracy, but rather simpler models and structural insights. Thus, 

Table 3.5 compares the size of the decision tree both before and after the data 

engineering. 

Table 3.5 Reduction in size of decision trees after data engineering 

Rule 
Data 

Set 

Size 
(Original) 

Size 
(Attribute 

construction 

and attribute 
selection) 

Size 
Reduction 

Average 

of Size 

Reduction 

Standard 

Deviation 
of Size 

Reduction 

Confidence 
Interval 

(95%) of 

Size 
Reduction 

EDD 1 196 61 135 

2 154 63 91 
113 18 (95,130) 

3 174 59 115 
113 18 (95,130) 

4 178 68 110 

WSPT 1 171 55 116 

2 167 54 113 
117 7 (110,124) 

3 171 59 112 
117 7 (110,124) 

4 190 62 128 

MS 1 50 38 12 

2 
3 

58 

67 

39 

59 

19 

8 
16 8 (8,24) 

4 136 110 26 

ERD 1 40 2 38 

2 56 2 54 
57 14 (43, 71) 

3 72 2 70 
57 14 (43, 71) 

4 68 2 66 

From Table 3.5, we can see that there is significant difference in the size of decision 



www.manaraa.com

34 

trees before and after data engineering. It is clear that the decision trees generated after 

the data engineering are much smaller, and hence typically simpler to interpret, than the 

trees generated using the original data. The attribute creation and selection is the least 

useful for the data generated using the MS rule, where there is only 27% reduction in tree 

size. On the other hand, for the data generated by the ERD rule there is a very dramatic 

reduction down to only two attributes, which is a reduction of 97% in size. 

3.5 Obtaining Structural Insights from Decision Trees 

Data mining not only leads to generate predictive models applicable for future data, 

but also makes the models descriptive and reveals useful structural insights. Some of 

unsupervised methods, such as clustering and association rule discovery, can be used as 

descriptive tools. Clustering assumes data is not labeled with class information. The goal 

is to create structure for data by objectively partitioning data into homogeneous groups 

where the within group object similarity and the between group object dissimilarity are 

optimized. This technique has been used extensively and successfully in discovering 

structure and insights from data where domain knowledge is not available or incomplete. 

Association rule discovery aims to discover interesting correlation or other relationships 

in large database. In section 3.3 we show how to use frequent item set generation to 

construct new composite attributes. Although transparent classification methods, such as 

decision tree, mainly focus on generating a set of grouping rules which can be used to 

classify future data, interesting and useful structural insights and knowledge can also be 

revealed by the attributes used in the model. 

In section 3.4, we show that improvements in accuracy are achieved by first creating 

derived attributes and then selecting a subset of attributes that is the most important. To 

obtain some insights into what is important it is interesting to consider what composite 

attributes are created for each data set. Table 3.6 shows the attribute pairs used as well as 

the number of derived attributes used by the model (after attribute selection). 



www.manaraa.com

35 

TableS. 6 Attributes discovered by the attribute creation and selection process 

Rule Priority Index Attribute Number of Derived 
Pairs Used Attributes Used 

EDD 
T EDD . 

j 
= <±L 

WJ 

2 

WSPT 
RWSPT ÂJ 

II 

(w„.Pi), (Wz.Pz) 

2 

MS 

11 (4,n), 

( d 2 ,  r 2  ) ,  ( ( / ] ,  d 2  ) ,  

(*2,^), (X,#,) 

2-3 

ERD JERD 
1I ~-rj 

1 

* Used by every data set 

Some attribute pairs were used in every replication, whereas others were only used by 

some. For convenience, the table also shows the priority index for each rule. These 

indices are of course unknown by the learning algorithm, but ideally one would expect 

the attribute construction and selection to discover the components of the relevant index. 

We note that for the EDD rule, a composite of the weight and due date of each attribute 

was discovered by the attribute construction in every replication. This is quite intuitive 

since the priority index is lfDD - —, and two composite attributes — and — are 
Wj w, w2 

thus sufficient to determine which job is dispatched first, Job 1 or Job 2. We emphasize 

again that the EDD rule is assumed unknown a priori, but the data mining has discovered 

that — and — are most important factors in the scheduling decision, which is the 
w, w2 

essential structural insight for this particular system. 

Similarly, for ERD, Job 1 goes ahead of Job 2 if and only if r, < r2, so a composite 

attribute of rx - r2 is sufficient. The attribute construction discovers this, and creates this 

composite attribute for every replication. For the WSPT and MS datasets, the process 



www.manaraa.com

36 

does not always discover the same attribute pairs. For the WSPT two composites of 

processing time and weight were used every time, but not always the same combination. 

Finally, for the dataset generated by the more complex MS rule, two or three composite 

attributes were used each replication, involving composites of due dates, release times, 

weights, and processing time. Overall, these results show that useful composite attributes 

are constructed and these attributes provide significant insights into what factors are 

important in each scheduling situation. 

3.6 Summary and Discussion 

In this chapter we address the problem that whether unknown knowledge behind 

historical scheduling data could be identified through direct data mining without 

background knowledge about the system. We have introduced a new framework for 

applying data mining directly to discover unknown dispatching rules from production 

data. We transform original dispatched list into a flat file of comparisons of any pair of 

jobs. A new target concept is specified to reveal whether the first job is dispatched earlier 

than the second job. This new target and fiat file transformation enable us to apply data 

mining to learn dispatching rules directly without any background knowledge about the 

scheduling practice in advance. We show that by using decision tree algorithm to learn 

flat files of comparisons between each pair of jobs, we can learn knowledge about how 

jobs are dispatched. The induced decision tree model not only is a predictive model that 

can be used as a dispatching rule, but from the model previously unknown structural 

knowledge can be obtained that provides new insights and may be used to improve 

scheduling performance. Furthermore, we develop methods for using frequent item set 

generation to construct composite attributes that improve the performance of the 

predictive models, and in combination with attribute selection method reveal what factors 

are the most influential in making the scheduling decisions. 



www.manaraa.com

37 

4 OPTIMAL INSTANCE SELECTION 

4.1 Introduction 

In Chapter 3, we developed a methodology for applying data mining to learn directly 

from scheduling data. The resulting decision tree model can be applied as a predictive 

model, in scheduling context, as a new dispatching rule. As a result, the scheduling 

decision process can be automated by applying the tree model directly to future data. In 

this chapter we address another important problem how to employ knowledge to improve 

scheduling practice. 

When we apply data mining to production data, a new interesting question emerges: 

do the historical scheduling data instances all represent good scheduling practice for 

learning? If there is a new worker coming to do the scheduling job, he probably could not 

do the job very well because of lacking experiences or expertise. Therefore, the data 

generated by the system when he was working may include some data not so suitable for 

learning. In this situation, if we apply the decision tree learning algorithm directly to this 

data, then the tree model after learning could not perform well enough as a new 

dispatching rule. Direct data mining of production data can mainly mimic scheduling 

practices. Thus, we propose the hypothesis that if we could identify the subset of good 

instances that represent best scheduling practice, then the induced decision tree model will 

perform ideally as an experienced scheduler, which means the scheduling practice could be 

improved. 

Motivated by this hypothesis, we first investigate whether tree models, induced from 

different subsets of scheduling data, perform differently as a new dispatching rule. Then we 

propose a novel instance selection methodology for scheduling, by combining data 

mining with optimization. In this approach, we use a genetic algorithm to find a heuristic 

solution to the optimal instances selection problem, and then induce a decision tree from 

this subset of best instances. The optimal instance selection can be viewed as determining 

the best practices from what has been done in the past, and the data mining can then learn 

new dispatching rules from those best practices. Through scheduling performance analysis, 



www.manaraa.com

38 

it is shown that induced model with optimal instance selection performs better than the 

original heuristic dispatching rule, which indicate scheduling practice could be improved 

through optimal instances selection. 

The remainder of this chapter is organized as follows. First, investigation into instance 

selection for scheduling is addressed. Then the genetic algorithm based instance selection 

methodology is presented to show how to identify best scheduling practices from 

scheduling data. Numerical results are also presented to show the scheduling performance 

of the induced decision tree after employing instance selection phase. 

4.2 Instance Selection for Scheduling 

As indicated in Chapter 3, the instances in the aggregated data are not usually all good 

for learning. Some examples may represent bad scheduling practice, for example, when a 

new scheduler without much expertise did the scheduling task. Such instances are not 

good for learning, because they will restrict us to discover important and useful 

knowledge that we can get if we only learn from good examples. Therefore, instance 

selection becomes a critical data engineering issues and the exploration of effective 

instance selection methodologies is very meaningful for knowledge discovery in 

production scheduling. 

Instance selection is firstly related to which kind of performance measure (i.e. 

objective function) is concerned, objective function value. Different objective function 

will lead to different set of data selected for learning. 

To investigate the value of instance selection, a set of simulation experiments is 

performed. Here we also consider the job scheduling problem. Basic data , r,, d], and 

Wj are first generated for a set of jobs j=\,2,...,m in the same way as shown in Section 

3.4. In these experiments the total number of jobs used is m=200. We split the whole set 

of jobs into four subsets according to the value of release time . There are fifty jobs in 

each subset after splitting. Four simple and well known dispatching rules for a single 



www.manaraa.com

39 

machine problem, namely, weighted earliest due date (EDD), weighted longest processing 

time first (LPT), weighted shortest processing time first (WSPT), and earliest release date 

(ERD) are applied to these four subsets respectively. Different objective function values 

are evaluated as the performance measures of the dispatching rules. We do experiments in 

this way just to simulate a kind of practical scheduling environment: there are four 

schedulers with different scheduling knowledge and they schedule jobs during four 

sequentially different time slots respectively. Those objective functions of interest include 

weighted maximum lateness (JVLmgx ), total weighted tardiness (^ wjTj ), total weighted 

completion times (]TwyCy), and makespan (Cmax). The calculation formula for these 

four measures are shown below, where C . is the completion time for job j. 

Maximum Lateness: 

W L™x= M f x  w j  *(max{0,cy- d j \ )  (4.1) 

Makespan: 

Cmax = max {cy} Completion time of the final job. (4.2) 

Total Weighted Tardiness: 

Z w j T j  = X wJ  * max( c j  ~ ~  d j  '°) (4-3) 
M j=l 

Total Completion Times: 

(4.4) 
j=i 

Table 4.1 Objective function values by different dispatching rules applied on subsets 

Subset # 
Dispatching 

y w,T y  w . C ,  Subset # 
Rule Applied j  j  Lu J J 

Set 1 EDD **379 3972 76866 1009 

Set 2 LPT 1690 13316 75029 777 
Set 3 WSPT 3084 15613 ** 74869 1037 
Set 4 ERD 782 7205 92827 989 

Note that weighted earliest due date (EDD) is known to result in smaller weighted 



www.manaraa.com

40 

maximum lateness (WLmax ) than do other three dispatching rules, which is revealed in the 

above table (WLmax =379 is the minimum with EDD rule). Similarly, weighted shortest 

processing time first (WSPT) will result in smaller weighted completion times w .C . ) 

than do other three dispatching rules, which is revealed in the above table 

(]T WJCJ =74869 is the minimum with WSPT rule). 

We choose weighted maximum lateness (Wlmax) as the performance measure for 

selecting good instances. Since the first subset of jobs dispatched with EDD rule lead to 

minimum WLmax, we select this set of scheduled jobs' data and transform them into 

flat-file form for learning. In order to get more general results, we normalized the release 

time and due date of these selected jobs according to the minimum release time and 

maximum due date in this sample data set. New derivative attributes are constructed from 

frequent itemset (section 3.1) and attributes selection is also employed during learning, as 

was described in section 3.3. 

After inductive learning, we get a decision tree model and apply it to the whole data 

set as a new dispatching rule. Then a new dispatching list is generated and the objective 

function value WLmax is calculated, which is 6988. If EDD rule is applied directly to the 

whole data set, the value of WLmax equals to 4459. Therefore, there is a large gap 

between the performance of the new dispatching rule and the performance of the EDD 

rule when the new dispatching rule is induced from all the data. 

Although there are not many positive results from the above experiments, we can still 

get some insights. The first insight is that, the subset of jobs scheduled by EDD may 

include many good instances but probably some instances are not good enough to learn 

from, although this subset is with the minimum value of WLmax . Good instances means that 

learning from those instances can lead to good decision tree models, which can perform 

well enough as dispatching rules. While in other subsets, jobs dispatched by other 

dispatched rules, there may be some good instances worthy of learning. From this point of 



www.manaraa.com

41 

view, we are interested in finding out how to select good instances from these four subsets 

of scheduled jobs data for learning, when the performance measure considered is WLmax. 

We choose tardiness as the scheduling performance measure, and select all the 

"un-late" jobs from all the four subsets. "Un-late" jobs are those jobs finished before their 

due dates. In this way, total of fifty eight jobs are selected, twenty eight jobs from subset 

1, fifteen from subset 2, ten from subset 3, and five from subset 4. After replicating the 

experiment in the same way as before, we find a decision tree after learning in only 

eleven leaves and with accuracy 94.5%. After applying this new dispatching rule to the 

whole data set, the objective function value of WLmm is 6717, which is somewhat 

improved a little compared with the previous decision tree before sampling 

(WLmax =6988). In this experiment, tardiness is considered. However, probably there are 

some other important factors should be taken into account. Thus, more research should be 

done for this part. 

The second insight is that from the decision tree model, can we get some knowledge 

that can be used to do improvements on the current model? The answer is yes. From the 

decision tree after instance selection, we prune the tree into a new one only with six 

leaves. The following set of dispatching rules is generated from the pruned tree: 

If d x  < d 2 ,  then dispatch job 1 first 

w, 
Except if r2 = 0 or —- <0.6 

w2 

Else: dispatch job2 first 

Except if w, > w2, w2 < 3 and r2 > 0.000305 

Note that r2 is the normalized released time according to earliest release time and longest 

due date. 

After applying this set of dispatching rule to the whole data set, we get a new 

dispatching list for these two hundred jobs and calculate the objective function value 

ofWLmax, which is 5516. Compared to the objective function values of WLmax before 



www.manaraa.com

42 

instance selection (6988) and after instance selection but before aggressive pruning 

(6717), we can see this set of dispatching rules performs much better with regards to 

maximum lateness' performance measure. Therefore, this kind of analysis and aggressive 

pruning is useful and effective. 

We performed more experiments to explore direct optimization on the schedule. We 

first find the latest job in the schedule generated by the decision tree and construct its 

neighborhood set, in which each neighbor is a new schedule. We obtain each new 

schedule by interchanging the positions of the latest job and of any one of other jobs. 

Then, we calculate the objective function value of each new schedule in the neighborhood. 

Arbitrarily select one from the schedules with the minimum objective function value. The 

selected schedule is the new object schedule. Then replicate the above steps. 

In this way, after 20 iterations, we find a good schedule (WLmax= 4388) from the 

original schedule generated by applying decision tree after instance selection. This 

schedule performs even better than EDD rule (WLmax = 4459) does. From this fact that 

only with twenty iterations, a good enough schedule can be found, it is clear that this 

approach can be effective. 

4.3 Genetic Algorithm Based Instance Selection Methodology 

In this section we present a new instance selection methodology for scheduling based 

on genetic algorithm for scheduling. In particular, we first discuss the genetic algorithm 

and its strength and applications in various areas, then investigate how to employ genetic 

algorithm in our instance selection context, finally, we evaluate the scheduling 

performance of the decision tree model with this methodology through a series of 

simulation experiments. 



www.manaraa.com

43 

4.3.1 Genetic Algorithm 

First pioneered by John Halland at University of Michigan in the 60s, genetic 

algorithms(GA) has been widely studied, experimented and applied in many fields. Not 

only do GAs provide alternative methods to solving problems; it consistently outperforms 

other traditional methods in many of the problems. Many of the real world problems 

involved finding optimal parameters, which might prove difficult for traditional methods 

but ideal for GAs. GAs have been applied successfully to a variety of learning tasks and to 

other optimization problems. For example, they have been used to learn collections of rules 

for robot control and to optimize the topology and learning parameters for artificial neural 

networks. 

GAs are a class of optimization algorithms inspired by population genetics and the 

Darwinian principle of natural selection. Given an objective function, the typical GA 

begins with a random population (generation) of solutions (chromosomes). Each solution is 

represented by a sequence of characters (genes) each having certain values (alleles). By 

crossover and mutation the best solutions (as measured by some fitness value), the GA 

produces a new population of improved solutions (offspring). The average fitness of the 

population, as well as the fitness of the best solutions, improves at each generation. This 

process continues until the GA has determined an acceptable solution to the problem (as 

determined by the developer). 

The crossover operator produces two new successors from two parent solutions, by 

copying selected bits from each parent. The bit at position i in each offspring is copied 

from the bit at position i in one of its parent. The choice of which parent contributes the 

bit for position i is determined by an additional string called the crossover mask 

(Mitchell, 1997). There are basically three types of crossover: single-point crossover, 

two-point crossover, and uniform crossover. 

In single-point crossover, one offspring takes the first n bits from the first parent and 

its remaining bits from the second parent. The second offspring uses the same crossover 

mask, but switches the roles of the two parents. It uses the first n bits from the second 

parent and its remaining from the first parent. The crossover mask contains n contiguous 



www.manaraa.com

44 

Is, and the following necessary number of Os. This results in offspring in which the first n 

bits are contributed by one parent and the remaining bits by the second parent. Each time 

the simple-point crossover operator is applied, the crossover point n is chosen at random, 

and the crossover mask is then created and applied. 

In two-point crossover, offspring are created by replacing intermediate segments of one 

parent by the middle part of the second parent string. The crossover mask contains the fist 

n0 Os and a following «, Is, then the necessary number of Os. Each time the two-point 

crossover operator is applied, a mask is generated by randomly choosing the integers n0 

and n x .  

In uniform crossover, bits of offspring are generated by uniformly sampling from the 

two parents. Accordingly, the crossover mask is generated as a random bit string with each 

bit chosen at random and independent of each others. 

In addition to recombination operators that produce offspring by combining segments 

of two parents, there is another type of operator, called mutation, produces offspring from a 

single parent. The mutation operator only produces some small changes to the bit string by 

choosing a single bit at random, then change its value. Mutation is often performed after 

crossover. 

4.3.2 Genetic Algorithm Based Instance Selection Methodology 

In this section we discuss a novel instance selection methodology that combines data 

mining with optimization for effective production scheduling. In this approach, we use a 

genetic algorithm to find a heuristic solution to the optimal instances selection problem 

(Wu and Olafsson, 2005), and then induce a decision tree from this subset of instances. 

Figure 4.1 shows the process and procedure of this approach. 

GA Based Instance Selection Algorithm 

Notation: 

TR : Training data set, 



www.manaraa.com

45 

Te : Test data set, 

S, = [e[,e'2,e'3,...,e'N_2,e'N^,], where S, is ithsubset,/' = 1,...,m, e'k is the A:th 

instance in subset Sj, Nj is the total number of instances in S,, 

m : Total number of subsets of training data set, 

g : The number of generations performed, 

c : Crossover rate, c e (0,1), 

mu : Mutation rate, mu e (0,1). 

Algorithm: 

Step 1 : Partition the training set Tr into m subsets through random sampling; 

Step 2: Apply decision tree algorithm to each subsets',, S 2 S m  ;  

Step 3: Apply each induced tree from step2 (Tree,,T r e e 2 T r e e m ) to the test set T e  ;  

Step 4: Use fitness function to evaluate the performance of all the trees, and rank the trees 

with their related subsets according to the trees' performance; 

Step 5: Perform GA operations: 

a. Selection: select the top (1 - c)m subsets and keep them intact into the next 

generation; 

b. Crossover: for the remaining cm 12 pairs, perform two points crossover; 

c. Mutation: randomly select mu subsets to perform mutation operation. 

Randomly replace one instance in the selected subset by one instance 

randomly selected from the original training data set. 

Step 6: New subsets are created from Step 5 as the next new generation, then replicate Step 

2 to Step 6, until identify a subset and a related tree with ideal performance. 



www.manaraa.com

46 

Generate 
Random 
Samples 

Evaluate 
Subset S," Fitness f) 

Evaluate Subset 5», * Fitness/,, ree m 

Subset & 

Subset S", 

Top 40% best subsets 

Too 20% best subsets 

Best Tree Model Tree* 

Test 

Sets 
Training 

Set 

GA Operators 

Selection 

Crossover 

Mutation 

Figure 4.1. GA based Instance Selection Approach 

In Step 1, the training data set is divided into a certain number (m ) of subsets, by 

randomly sampling. Then, for each subset, C4.5 decision tree algorithm is applied 

respectively (see Step 2). As a result, m different decision trees are generated by learning 

all the subsets of the training data. In the next step, all these decision trees are applied to the 

test data set as a predictive model to predict which job will be scheduled earlier when 

compare any two jobs. Then the sequence of the whole set of jobs can be derived. That is, 

each decision tree will work as a new dispatching rule to dispatch a new set of jobs, 

represented in test data set. 

In the following Step 4, a defined fitness function will be used to evaluate each decision 

tree's performance. The exact definition and format of the fitness function will vary 

according to different applications. In our research context, the decision tree will perform 

as a new dispatching rule; therefore, what we concern is the scheduling performance of the 

decision tree. Here, we choose maximum lateness (WLmax ), over all the scheduled jobs as 

the performance measure. That is, the objective of the optimal instance selection is to 

identify the best data set which will generate an ideal decision tree with best scheduling 

performance. Thus, the fitness function is defined as the following formula: 



www.manaraa.com

47 

f ( S i )  =  M a x  W j  *(max{0,(Cy -dj)}) i = j = \,...,Ni (4.2) 

Where, similarly to before, 5V stands for the zth subset of training data; wy is the y th 

job's weight; Cy represents the completion time of the j th job; d} represents the due 

date of the j  th job; N i  stands for the total number of jobs in subset S t .  

The lateness of the 7 th job is represented by maxjo, (C; - dj )}. If the job is finished 

processing before its due date, which meansC; - dj <0, the lateness is 0. On the other 

hand, if it is finished later than its due date ( CJ > dj), the lateness equals C. - d r The 

product of lateness and weight represents the weighted lateness. 

After evaluation by fitness function, all the trees are ranked according to their fitness. 

Select the top|_(l - c)m\ subsets and keep them intact into the next generation. As for the 

remaining [cm]subsets, a two-point crossover operator is performed for these [cm/2] 

pair of subsets. Both two-point and single point crossovers are the most common types of 

crossover in Genetic Algorithm. I chose two-point crossover in the GA based instance 

selection method. I also performed experiments to compare the scheduling performance of 

GA based instance selection method with these two crossovers on same data sets 

respectively. The results show that the scheduling performance is very similar between 

these two crossovers, which indicate that whether to employ single point crossover or 

two-point crossover does not make big difference on the scheduling performance of 

decision trees. Because there is no ordering to the instances, it is not surprising that single 

point vs. two-point does not make much difference. The two-point crossover operator is 

shown below. 



www.manaraa.com

48 

Parents Offspring 

> 
Figure 4.2 Two point crossover operator in GA Based Instance Selection 

Where, S, and Sj represent two parents respectively, while Sf and Sj represent two 

intermediate segment of parent Sf (instances from el to e'N ) into the middle of the 

parent SV (instances from ei to eJ
Nj ). While «SV is created by substituting the 

intermediate segment of parent Sj (instances from to e'N ) into the middle of the 

parent St (instances from e'3 to e'N ). In this figure, the intermediate segment starts from 

the third instance in the subsets, but actually, the starting position of the intermediate 

segment is determined randomly. 

In the next mutation operation, mu subsets are selected randomly. For each selected 

subset, randomly choose one instance, and replace it by another instance randomly selected 

from the original training data set. 

When all these GA operations performed, a new generation begins. The best decision 

trees with their related data sets in each generation are kept in the record through the whole 

process. After a certain number of generations, a subset of training data and the related 

decision tree with the best performance can be identified. 

We contend this optimal instance selection methodology is a broadly applicable 

approach. As long as users define their own fitness function based on different applications, 

all the other steps remain the same. In the next section, a numerical example is given out to 

offspring after crossover operation respectively. St is created by substituting the 



www.manaraa.com

49 

show how to apply this optimal instances selection approach to identify the best scheduling 

practice. 

4.3.3 Numerical Example 

In this section, we will use one numerical example to illustrate how to apply the GA 

based instance selection methodology in scheduling context. A small data set with 10 jobs 

is created as the training data with release time, due date, processing and weights. The 

data set creation process is similar to data sets creation in simulation experiments 

explained Section 3.4. Also similar to the numerical example in Chapter 3, single 

machine system is concerned here, and ten jobs are scheduled according to EDD (earliest 

due date dispatching rule). The original variable set is the same as before: attribute 

Release stands for the job's released time, specifically, when the job is available for 

processing; attribute DueDate stands for the due date of the job; Processing stands for the 

processing time needed to finish the job by the machine; Weight reveals the priority of the 

job; Sequence represents the order in which to process the job within this whole set of 

jobs after scheduling. The original data set is shown below in Table 4.2. 

Table 4.2 Training data dispatch list in numerical example for GA based instance 

selection methodology 

Job ID Release DueDate Processing Weight Sequence 

1 2 24 7 5 2 

2 0 7 3 3 1 

3 15 10 4 1 8 

4 5 36 18 3 9 

5 3 25 6 3 7 

6 7 20 2 1 10 

7 8 11 12 3 3 

8 12 15 5 3 4 

9 9 29 9 5 6 

10 6 39 17 7 5 



www.manaraa.com

50 

This original data set is transformed into a flat file (shown in Table 4.3) by the same 

strategy explained in the research framework of applying data mining in scheduling (see 

C h a p t e r  3 ) .  E a c h  i n s t a n c e  r e p r e s e n t s  a  c o m p a r i s o n  b e t w e e n  t w o  j o b s .  R l ,  D l ,  P I ,  a n d  W J  

represent the released time, due date, processing time, and weight of the first job 

respectively. Similarly, R2, D2, P2, and W2 represent the released time, due date, 

processing time, and weight of the second job respectively. The last attribute, Jobl 

Scheduled First is the class attribute and will be "yes", if Jobl is scheduled earlier than 

Job2 according to the original dispatch list, and vice versa. 

Apart from these original attributes, we create four derivative categorical attributes: 

Jobl_Released_Earlier, Jobl_Due_Earlier, Jobl_PT_Lower, and Jobl_Weight Higher. 

These four attributes are interaction terms related a pair of original attributes. In particular, 

the value for Jobl_Released_Earlier will be "yes" if Jobl is released earlier than Job2, 

and vice versa; the value of Jobl Due_Earlier will be "yes" if Jobl dues earlier than 

Job2, and vice versa; the value of Jobl_PT_Lower will be "yes" if Jobl needs shorter 

processing time than does Job2, and vice versa; the value for Job 1 Weight Higher will 

be "yes" if Jobl is with higher weight than is Job2, and vice versa.. 

Table 4.3 Training data flat File in numerical example for GA based Instance selection 

methodology 

Job 

1 
Rl Dl PI W1 

Job 
R2 D2 P2 W2 

Jobl 

Released 

Jobl 

Due 

Jobl 

PT 

Jobl 

Weight 

Jobl 

Scheduled 
Job 

1 
Earlier Earlier Lower Higher First 

1 2 24 7 5 2 0 7 3 3 no no no yes no 

1 2 24 7 5 3 15 10 4 1 yes no no yes yes 

1 2 24 7 5 4 5 36 18 3 yes yes yes yes yes 

1 2 24 7 5 5 3 25 6 3 yes yes no yes yes 

1 2 24 7 5 6 7 20 2 1 yes no no yes yes 

9 9 29 9 5 10 6 39 17 7 no yes yes no no 

As explained in Section 3.3, transformation from dispatch list into flat file will result 

in dependency of instances in the training set shown in Table 4.3. The assumption of 



www.manaraa.com

51 

independence for normal machine learning methods is violated. Exploring the effects of 

dependent data on induced model would be an important issue for future research. 

Similarly, a test data set is generated with same distributions as in above training data. 

In this way, test data can be seen as the new data collected from the same system and used 

to evaluate the performance of the decision tree model without overfitting. Table 4.4 

shows the test data set dispatch list by EDD dispatching rule and Table 4.5 shows the test 

data flat file. 

Table 4.4 Test data dispatch list in numerical example for GA based instance selection 

methodology 

JobJD Release Due Date Processing Weight Sequence(EDD) 

1 11 20 7 3 8 

2 3 24 6 5 6 

3 10 27 8 7 4 

4 4 57 11 3 9 

5 8 9 7 3 3 

6 0 49 13 3 1 

7 14 29 10 5 7 

8 2 7 12 3 2 

9 9 21 15 5 5 

10 5 44 4 1 10 

Table 4.5 Test data flat File in numerical example for GA based Instance selection methodology 

Jobl Jobl Jobl Jobl Jobl 

Jobl Rl Dl PI W1 Job2 R2 02 P2 W2 Released Due PT Weight Scheduled 

Earlier Earlier Lower Higher First 

1 11 20 7 3 2 3 24 6 5 no yes no no no 

1 11 20 7 3 3 10 27 8 7 no yes yes no no 

1 11 20 7 3 4 4 57 11 3 no yes yes no yes 

1 11 20 7 3 5 8 9 7 3 no no yes no no 

1 11 20 7 3 6 0 49 13 3 no yes yes no no 

9 9 21 15 5 10 5 44 4 1 no yes no yes yes 

If we apply C4.5 decision tree algorithm directly to learn from the training data flat 

without instance selection, we can get the following tree model (Figure. 4.3) with five 



www.manaraa.com

52 

leaves. 

>2 < 2  

Yes No 

I )uocktle I 

<15 >15 

No 

No 

Yes 

Yes 

Figure 4.3 Decision tree without instance selection in the numerical example 

From this tree model we can derive the following set of dispatching rules: 

If Release_Time_l< 2 or Jobl weight is higher, then schedule Jobl first; 

If Release_Time_l>2 and Job2 Weight is higher and Duedatel>15, then schedule 

Job2 first; 

If Release Time I >2 and Job2 Weight is higher and Duedatel< 15 and wehghtl< 1, 

then schedule Job2 first; 

If Release_Time_l>2 and Job2 Weight is higher and Duedatel<=l 5 and wehghtl>l, 

then schedule Jobl first; 

After applying this decision model, that is, applying the above set of dispatching rule 

to the test data set, we can get the following job sequence: J3-J2-J5-J6-J7-J8-J9-J4-J1 -J10. 

Figure 4.4 shows the Gannt chart for this schedule and the weighted lateness for each job 

in this schedule. 

In Figure 4.4, a series of horizontal bars represent the sequence of job for processing. 

The first job, J3, starts after it is released at 10. Before J3 is finished, J2 has arrived to the 

machine, thus, J2 immediately starts after J3 is finished. In the similar way, J10 is last job 



www.manaraa.com

53 

to be processed. Another series of vertical bars represent each job's relevant weighted 

lateness ( w] * max {o, (C; - d)\). We can see that there are four jobs (J3, J2, J6, and J10) 

finished with no lateness, but thetFLmax =300 (J9's weighted lateness), which shows the 

scheduling performance of the above decision tree without instance selection. Based on 

the dispatched sequence in the original test data, the relevant maximum lateness can be 

calculated, WLmm =210. The decision tree algorithm is only trying to learn and mimic the 

EDD rule, thus, it is not expected to perform better than EDD rule. 

Sequence J3 J2 J5 J6 J7 J8 J9 J4 J1 J10 

m 

13 
10 

12 

177 

15 

300 

125 

66 

11 

237 

105 

Figure 4.4 Gannt Chart for job dispatch list by tree model without instance selection. 

Now, we apply the GA based instance selection approach presented in the previous 

section (4.3.2). The training data set is divided into six subsets (m=6). There are total 

forty-five instances in the training data set, and accordingly in each subset, there are 

seven or eight instances (N=7 or 8). We set the number of generations to be thirty 

(g=30), crossover rate to be 0.6 (c=0.6), mutation rate to be 0.05 ( mu =0.05). 

In the first generation, the training data are divided into six subsets. C4.5 decision tree 



www.manaraa.com

54 

algorithm is applied to each subset, and the relevant fitness ( W L m a x ) ,  is calculated. 

According toWLmax, we rank the six subsets and sort them into an ascending sequence. 

Then we select the top 1, 2, 3, 4 subsets respectively, and record the relevant WLmdX and 

set of instances. 

The next step is to perform GA operations: select the top two (which 

is |_(1 -c)m\ = [(1-0.6) *6_J = 2) subsets and keep them intact into the next generation; 

two point crossover operation is performed to the remaining two pairs 

([cm/2] = [0.6*6/2] = 2); randomly select one subset (\m*mu~\ = [6*0.05/2] = 1), and 

replace one instance though random selection by one instance randomly selected from the 

whole training data set. 

After finishing GA operations, a new generation is created and the above procedures 

are repeated. In this way, we find an improved decision tree model (shown in Figure 4.5) 

after thirty generations. 

Weight 2 

Yes Jobl \Veiglu_I ligher 

Yes No 

Yes Jobl Due I'arlier 

No Yes 

No 

Figure 4.5 Decision tree with instance selection in the numerical example 

Compared to the decision tree model in Figure 4.5, there are four leaves nodes. The 

derived dispatching rule is quite simple: 

If Weight 2 < 3 and Job2 Weight Higher and Job2 Due Earlier, then dispatch Job2 



www.manaraa.com

55 

first, 

else: dispatch Jobl first. 

When apply this new dispatching rule to test data flat file, we get a new dispatch list: 

J9-J7-J3-J2-J8-J5-J1-J6-J4-J10. The related Gannt chart is shown in Figure 4.6. 

Sequence J9 J7 J3 J2 J8 J5 J1 J6 J4 J10 

15 

15 

_CL 

10 

12 

13 

159 174 

105 
120 

25 

n 

162 

11 

142 

114 

Figure 4.6 Gannt Chart for job dispatch list by tree model with instance selection 

Similarly to Figure 4.5, a series of horizontal bars represent job dispatched for 

processing, while another series of vertical bars represent job's related weighted lateness 

(Wj * max{0,(C; - dj )}). Compared to Figure 4.5, there is only one job (J 10) is finished 

before its due date, but the maximum lateness of the whole set of jobs is only 

WLmax =174, which is much lower than that of previous dispatch list (WLmax =300) found 

using the tree model without instance selection. With instance selection, the scheduling 

performance of the tree model has been improved 42.0%. Furthermore, it performs even 

better than the EDD (WLmax =210), which is the best heuristic dispatching rule for single 

machine scheduling problems with respect to WLmax. The relevant best set of instances is 



www.manaraa.com

56 

shown in Table 4.6. 

Therefore, from this numerical example, we can conclude that with instance selection 

the scheduling performance of decision tree model could be improved greatly, that is the 

GA based instance selection methodology can be an effective approach to identify best 

scheduling practice from historical scheduling data. 

Table 4.6 Best instances set selected by GA based instance selection approach 

J1 Rl Dl PI W1 32 R2 D2 P2 W2 

Jobl 

Released 

First 

Jobl 

Dues 

First 

Jobl PT 

Shorter 

Jobl 

Weight 

Higher 

Jobl 

Scheduled 

First 

1 2 24 7 5 5 3 25 6 3 yes yes no yes yes 

2 0 7 3 3 8 12 15 5 3 yes yes yes no yes 

3 15 10 4 1 4 5 36 18 3 no yes yes no yes 

3 15 10 4 1 7 8 11 12 3 no yes yes no no 

4 5 36 18 3 5 3 25 6 3 no no no no no 

4 5 36 18 3 6 7 20 2 1 yes no no yes yes 

4 5 36 18 3 8 12 15 5 3 yes no no no no 

6 7 20 2 1 10 6 39 17 7 no yes yes no no 

7 8 11 12 3 8 12 15 5 3 yes yes no no yes 

9 9 29 9 5 10 6 39 17 7 no yes yes no no 

4.4 Scheduling Performance Analysis 

The example in section 4.3.3 indicated that GA based instance selection methodology 

is an effective approach to improve decision tree model's scheduling performance. In this 

section, we evaluate the implementation of GA based instance selection methodology in 

scheduling more extensively through a series of simulation experiments. 

4.4.1 Experimental Setup 

This evaluation is based on data created considering different levels of variability and 

tightness. The data's variability is revealed by coefficient of variation, which provides a 

relative measure of data dispersion compared to the mean. The coefficient of variation is 

represented by :Cv = s/x, where s  stands for the standard deviation, and x  stands for 



www.manaraa.com

57 

the mean. Different coefficient of variability will be employed to create the data for release 

time {Release), due date (DueDate), processing time (Processing) respectively. Tightness 

is another factor considered when we create data. Its definition is: 

T i  =  D - R  +  P  

Where, Ti stands for tightness, D stands for the mean of due date, R stands for the mean 

of release time, P stands for the mean of processing time. 

Table 4.7 Simulation experiments design for scheduling analysis 

Release 
(Cv & R) 

DueDate 
(Cv & D) 

Processing 
(Cv & P) 

Tightness 

Set 1 

Set 1A 

Set IB 

Set 1C 

Cv = 1 

5 
10 
15 

Cv = 0.5 

8 

15 

25 

Cv = 2 

2 

5 

5 

Ti 

5 
10 
15 

Set 2 

Set 2A 

Set 2B 

Set 2C 

Cv = 2 

5 

10 

15 

Cv = 0.5 

8 

15 

25 

Cv = 1 

2 

5 

5 

5 
10 
15 

Set 3 

Set 3A 

Set 3B 

Set 3C 

Cv = 2 

5 
10 
15 

Cv = 1 

8 
15 
25 

Cv = 0.5 

2 

5 
5 

5 

10 

15 

Set 4 
Set 4A 
Set 4B 
Set 4C 

Cv = 0.5 

5 
10 
15 

Cv = 1 

8 
15 
25 

Cv = 2 

2 

5 

5 

5 

10 

15 

Set 5 
Set 5A 
SetSB 
Set 5C 

Set 6 
Set 6A 
Set 6B 
Set 6C 

Cv = 0.5 

5 
10 
15 

Cv = 1 

5 
10 
15 

Cv = 2 

8 

15 
25 

Cv = 2 

8 

15 

25 

Cv = l 

2 

5 

5 
Cv = 0.5 

2 

5 
5 

5 

10 

15 

5 
10 
15 



www.manaraa.com

58 

There are three distributions are employed to create release time, due date and 

processing time: Erlang distribution withCv = 0.5, Exponential distribution with Cv = 1, 

and Hyper exponential distribution with Cv = 2 . We design six sets of simulation 

experiments with different combinations of these three distributions assigned to the three 

attributes: release time {Release), due date (DueDate), processing time {Processing) 

respectively. We use the same approach (in Section 3.4.1) to generate simulation data for 

each attribute based on the determined distribution. Furthermore, in each set, there are three 

different data with respect to different tightness: Ti = 5, Ti = 10, and77 = 15 . Therefore, 

there are total of eighteen simulation data sets, and the related simulation experimental 

design is shown below in Table 4.7. 

4.4.2 Tree Models Performance Analysis 

Table 4.8 shows the comparisons between decision trees without and with instance 

selection for each simulation experiment. From this table, we can see that the size of 

decision trees with instance selection decreases greatly: from almost 300 leaves down to 

only 7 or 14 leaves. This indicates that, with instance selection, decision tree models are 

capable to discover the most important information and knowledge of the scheduling data, 

and they are much easier to be interpreted. There is no case that zero is within the 95% 

confidence interval which indicate the size of decision tree model after instance selection is 

significantly different from the size of the original tree models. Therefore, we can conclude 

that after instance selection, the size of induced tree is reduced greatly. 

Apart from size evaluation, the scheduling performance of the decision trees with 

instance selection is our ultimate concern. Table 4.9 shows the scheduling performance 

{WLmm ) comparison between decision tree models without and with instance selection for 

each simulation experiment. 



www.manaraa.com

59 

Table 4.8 Size of decision trees without and with instance selection 
Release Due 

Date 
Process 

Tightness 
WLmax Difference of WLmax (A WLmax ) 

Average 

of 

Difference 

Standard Confidence 

Cv = 0.5 Cv = l Cv = 2 Original 
Instance 

Selection 

Average 

of 

Difference 

deviation 

of 

Difference 

Interval 

(95%) of 

Difference 

5 8 2 5 237 14 -223 4 (-227, -219) 

10 15 5 10 285 11 -274 2 (-276, -272) 

25 15 5 15 250 10 -240 2 (-242, -238) 

Cv = 0.5 Cv = 2 Cv = l 

5 8 2 5 251 11 -240 4 (-244, -236) 

10 15 5 10 265 7 -258 1 (-259, -257) 

15 25 5 15 295 10 -285 1 (-286, -284) 

Cv = 1 Cv = 0.5 Cv = 2 

5 8 2 5 329 7 -322 1 (-323,-321) 

10 15 5 10 308 10 -299 2 (-301, -296) 

15 25 5 15 305 8 -297 2 (-299, -296) 

9
 

II Cv = 2 Cv = 0.5 

5 8 2 5 333 7 -327 1 (-327, -326) 

10 15 5 10 305 8 -297 0 (-297, -297) 

15 25 5 15 351 8 -343 1 (-344, -342) 

Cv = 2 Cv = 0.5 Cv = l 

5 8 2 5 301 10 -291 3 (-294, -288) 

10 15 5 10 313 12 -301 8 (-309, -294) 

15 25 5 15 293 9 -285 1 (-285, -284) 

Cv = 2 Cv = l Cv = 0.5 

5 8 2 5 319 8 -311 2 (-312, -309) 

10 15 5 10 301 9 -292 1 (-293, -291) 

15 25 5 15 316 9 -308 2 (-309, -306) 

Four each data set, we replicate four time with GA based instance selection method 

and record the WLmas values. Then calculate the difference between WLmax of original 

decision tree model without instance selection and the WLmax value of the new decision tree 

model after performing instance selection. The last three columns give out the average, 

standard deviation, and 95% confidence levels of the difference in WLmax based on four 

replications respectively. From the confidence levels results, we can see that there is a 



www.manaraa.com

60 

significant difference between WLmax values of decision tree models with and without 

instance selection. Because both upper and lower limits are negative, which indicates that 

with instance selection, WLmax could be improve significantly though instance selection. 

Table 4.9 Scheduling performance comparison of decision trees without and with instance 

selection 

Release Due 

Date 
Process 

Tightness 
WLmax Difference of WLmax (A WLmwl ) 

Cv = 0.5 Cv = 1 Cv = 2 Original 
Instance 

Selection 

Average 

of 

Difference 

Standard 

deviation 

of 

Difference 

Confidence 

Interval (95%) 

of difference 

5 8 2 5 1790 1094 -710 11 (-714, -598) 

10 15 5 10 3589 2215 -1360 14 (-1374, -1347) 

25 15 5 15 4788 2555 -2204 26 (-2260, -2237) 

Cv = 0.5 Cv = 2 Cv = 1 

5 8 2 5 2280 1017 -1259 3 (-1283,-1189) 

10 15 5 10 5103 2528 -2571 13 (-2592, -2530) 

15 25 5 15 4725 2494 -2211 16 (-2228, -2178) 

Cv = l Cv = 0.5 Cv = 2 

5 8 2 5 2189 1226 -956 7 (-1172,-1125) 

10 15 5 10 5548 3250 -2280 13 (-3197, -2934) 

15 25 5 15 5706 2912 -3503 45 (-1732,-1582) 

Cv = 1 Cv = 2 Cv = 0.5 

5 8 2 5 2245 1108 -1122 11 (-931,-813) 

10 15 5 10 6597 3356 -3226 14 (-2631,-2164) 

15 25 5 15 4887 3138 -1731 19 (-2882, -2569) 

Cv = 2 Cv = 0.5 Cv = l 

5 8 2 5 2520 1263 -1241 14 (-1316,-1239) 

10 15 5 10 6189 3097 -3057 26 (-3318,-2953) 

15 25 5 15 5607 3389 -2204 15 (-2924, -2312) 

Cv = 2 Cv = 1 Cv = 0.5 

5 8 2 5 2768 1410 -1347 9 (-1391,-1221) 

10 15 5 10 6250 3284 -2939 22 (-3074, -2949) 

15 25 5 15 6453 3458 -2981 14 (-2830, -2122) 



www.manaraa.com

61 

Apart from analyzing the difference between induced models with and without instance 

selection, we also compared the scheduling performance of the induced model after 

instance selection and the EDD which is employed to create the original training data sets. 

Table 4.10 shows the numerical results about the scheduling performance comparison 

between induced decision tree model and EDD. 

Table 4.10 Scheduling performance comparison between EDD and tree model with 

instance selection 
Release Due 

Date 
Process 

Tightness 
WLmax Difference of WLmax (A WLmax ) 

Cv = 0.5 C v - \  Cv = 2 EDD 
Instance 

Selection 

Average 

of 

Difference 

Standard 

deviation 

of 

Difference 

Confidence 

Interval (95%) 

of difference 

5 8 2 5 1890 1094 -756 59 (-814, -698) 

10 15 5 10 3553 2215 -1324 14 (-1338,-1311) 

25 15 5 15 4583 2555 -2044 12 (-2055, -2032) 

Cv = 0.5 Cv = 2 Cv = 1 

5 8 2 5 2035 1017 -991 48 (-1038, -944) 

10 15 5 10 4529 2528 -1987 32 (-2018,-1956) 

15 25 5 15 3857 2494 -1335 26 (-1360,-1310) 

II Ô
 Cv = 0.5 Cv = 2 

5 8 2 5 1688 1226 -592 24 (-615, -568) 

10 15 5 10 4764 3250 3 134 (-1364,-1101) 

15 25 5 15 4965 2912 -1735 77 (-1810,-1660) 

Cv = l Cv = 2 Cv = 0.5 

5 8 2 5 1672 1108 -355 60 (-414, -296) 

10 15 5 10 4814 3356 -1664 238 (-1897, -1430) 

15 25 5 15 4381 3138 -1401 160 (-1557, -1244) 

Cv = 2 Cv = 0.5 Cv = 1 

5 8 2 5 2212 1263 -970 39 (-1008, -931) 

10 15 5 10 5683 3097 -2629 186 (-2812, -2447) 

15 25 5 15 5152 3389 -2163 312 (-2469, -1857) 

Cv = 2 C v - l  Cv = 0.5 

5 8 2 5 2369 1410 -907 87 (-992, -822) 

10 15 5 10 4957 3284 -1719 64 (-1781,-1656) 

15 25 5 15 5515 3458 -1538 361 (-1892,-1184) 



www.manaraa.com

62 

From 95% confidence intervals in Table 4.10, we can see that there is a significant 

difference between the tree model after instance selection and EDD. Similarly to the 

analysis result about Table 4.9, the induced tree models could perform significantly better 

than EDD in terms ofWLmax, due to all negative upper and lower limits. 

From the above numerical results, theJVLmax by decision trees with instance selection 

is much lower than that of the decision trees without instance selection (Original), the 

improvements are from 43% to 50%. Moreover, decision trees with instance selection 

perform even better than EDD dispatching rule: the improvements are from 30% to 42%. 

That fact that much higher scheduling performance of decision trees with instance 

selection than the other two holds for each simulation experiment, thus, we can conclude 

that this GA based instance selection is an effective methodology to improve scheduling 

performance when applied in scheduling context. 

m EDD m Original Tree o Tree(IS) 

6000 -, 

5000 

4000 

3000 

2000 

1000 

0 
1 2 3 4 5 6 

Data Sets 

Figure 4.7 Average WLmax comparisons between EDD, original tree and the tree with instance selection 

4.4.3 Minimum Splitting Size's impact analysis 

In Section 4.4.2, we analyze the scheduling performance of trees after instance 

selection by comparing models with and without instance selection, and comparing the 



www.manaraa.com

63 

models after instance selection and EDD. To avoid confounding, we keep the parameters 

for C4.5 as unchanged for all experiments. But, it is necessary to take into account the 

effects by adjusting parameters when we apply decision tree algorithm to training data. 

Minimum splitting size is one of most important parameters for applying C4.5 algorithm, 

which indicate the minimum number of instances allowed in each leaf of the decision tree. 

Usually, the greater the minimum splitting size, the smaller induces decision trees. From 

the above numerical experiments results, it is shown that instance selection can reduce the 

tree size greatly, thus we perform more experiments to compare the scheduling 

performances of similar size of trees by changing minimum splitting size parameter and 

by instance selection. 

We use the same eighteen data sets as used before. For each data set, we first generate 

decision tree with same and similar size of tree with instance selection by resetting 

minimum splitting size (minNumObj in WEKA). Then new trees will be applied to the 

relevant test data to calculate WLmax. In the simulation experiments in Section 4.4.2, for 

any data set of the total eighteen data sets, we perform four replications to account for the 

randomness from GA based instance selection. Therefore, there would be at most four 

experiments need to be performed for each data set when the size of tree models are all 

different after instance selection. Table 4.11 shows the experiments results. 

In Table 4.11, both average values of WLmax by trees with resetting minimum splitting 

size and with instance selection are listed, but we need to mention that for each data set, 

there are four replications, and thus, we can calculate the standard deviation and 95% 

confidence intervals for the difference between WLmax by each pair of trees. From Table 

4.11, we can see that there is no case with zero located within the 95% confidence intervals, 

which indicate that values are significantly different between trees by changing 

minimum splitting size and by instance selection. In addition, all the upper and lower limits 

are negative, which shows that the WLmm value by trees with instance selection are 

significantly smaller than that of trees by adjusting minimum splitting size. In conclusion, 



www.manaraa.com

64 

by adjusting the minimum splitting size of trees cannot achieve comparable improvements 

on scheduling performance as by instance selection, especially when the scheduling 

p e r f o r m a n c e  m e a s u r e  i s  w e i g h t e d  m a x i m u m  l a t e n e s s  W L m x .  

Table 4.11 Scheduling performance comparison between same size of trees with adjusting 

minimum splitting size and with instance selection 
Release Due 

Date 
Process 

Tightness 
WLmax Difference of WLmax ( A WLmax ) 

Average 

Cv = 0.5 Cv = 1 Cv = 2 

by 

adjusting 

minimum 

splitting 

size 

Average 

by 

Instance 

Selection 

Average 

of 

Difference 

Standard 

deviation 

of 

Difference 

Confidence 

Interval (95%) 

of difference 

5 8 2 5 1946 1094 -756 59 (-814, -698) 

10 15 5 10 4773 2215 -2805 14 (-2819, -2792) 

25 15 5 15 5296 2555 -703 12 (-714, -691) 

Cv = 0.5 Cv = 2 Cv = 1 

5 8 2 5 2377 1017 -1493 48 (-1540,-1446) 

10 15 5 10 5379 2528 -4151 32 (-4182, -4120) 

15 25 5 15 5309 2494 -2756 26 (-2781,-2731) 

Cv = 1 Cv = 0.5 Cv = 2 

5 8 2 5 5296 1226 -1498 24 (-1521, -1474) 

10 15 5 10 7384 3250 -5701 134 (-5832, -5569) 

15 25 5 15 4794 2912 -1691 77 (-1766, -1616) 
1Ï Ô

 Cv = 2 Cv = 0.5 

5 8 2 5 2278 1108 -961 60 (-1020, -902) 

10 15 5 10 6058 3356 -3322 238 (-3555, -3088) 

15 25 5 15 5493 3138 -2243 160 (-2399, -2086) 

Cv = 2 Cv = 0.5 Cv = l 

5 8 2 5 2744 1263 -1049 39 (-1087,-1010) 

10 15 5 10 6587 3097 -3418 186 (-3601,-3236) 

15 25 5 15 5971 3389 -3558 312 (-3864, -3252) 

Cv = 2 Cv = 1 Cv = 0.5 

5 8 2 5 2784 1410 -1327 87 (-1412,-1242) 

10 15 5 10 5750 3284 -2360 64 (-2422, -2297) 

15 25 5 15 6550 3458 -2442 361 (-2796, -2088) 



www.manaraa.com

65 

4.5 Summary and Discussion 

In this chapter, we investigate in the problem whether we could improve current 

scheduling performance through applying data mining in scheduling directly. We 

presented an optimization based instance selection approach to select good instances from 

production data to identify the best scheduling practice. As a result, the induced decision 

tree models can work well as new dispatching rules with improved scheduling 

performance. 

We first investigated whether different tree models, induced from different subsets of 

scheduling data, perform differently as a new dispatching rule. Then we proposed a 

optimization based instance selection methodology for scheduling, by combining data 

mining with optimization for effective production scheduling. In this approach, we use a 

genetic algorithm to find a heuristic solution to the optimal instances selection problem, 

and then induce a decision tree from this subset of best instances. A simple numerical 

example is employed to illustrate how to perform GA based instance selection approach in 

scheduling. Finally, through extensive numerical results, we conclude that this GA based 

instance selection methodology is an effective approach to identify the best scheduling 

practice and induced decision tree's scheduling performance can be improved effectively 

compared to the models without instance selection. Moreover, it is illustrated by numerical 

results that the comparable improvements by instance selection cannot be achieved by 

adjusting minimum splitting size, one of the most important parameters for decision tree 

algorithm. 



www.manaraa.com

66 

5 BEST INSTANCES ANALYSIS 

5.1 Introduction 

In Chapter 4, the GA based instance selection methodology is illustrated and its 

application in scheduling is analyzed. Through a series of simulation experiments, the 

numerical results show that this approach is an effective methodology to identify the best 

data from large database, leading to construct robust decision tree models with improved 

scheduling performances. Meanwhile, an interesting question comes up: why and how 

these instances selected by the algorithm are "good" and represent "good scheduling 

practice". 

In this chapter, we propose a new approach to analyze how the best data are selected 

through instance selection procedure. The basic idea of this approach is to apply data 

mining directly to learn about best data identification. This is a classification problem: a 

new target concept about how data are selected is defined and accordingly, classification 

algorithms are employed to learn to determine whether the data instances should be 

selected or not. 

The remainder of this chapter is as the following. First, we briefly reviewed some 

related issues and the basic idea of this analytical approach; then we use a simple example 

to illustrate this new approach: how to apply data mining to learn how best instances are 

selected. More extensive experiments are conducted using same data sets involved in 

Chapter 4 and the numerical results are discussed further. After applying data mining 

algorithm, the performances of the models are analyzed extensively. In addition, attributes 

selection is also employed to identify those factors that are most important for instance 

selection decision process. 

5.2 Analytical Approach 

It is already shown that GA based instance selection methodology can identify the 



www.manaraa.com

67 

best instances from the original data set efficiently. Now more research needs to be done 

to find out why or how these best data can be characterized. Our strategy is to reprocess 

the data and apply data mining directly to learn how those instances are selected. We 

defined a new target concept to be learned as to determine whether to select a certain 

instance or not. Motivated by this strategy, a new class attribute is introduced to the 

original training data set, called "Selectedwhich reveals whether a certain instance is 

selected by GA based Instance Selection method or not. If the record is selected, then the 

value for this class attribute is "yes", otherwise it is "no". After this new class attribute is 

created, we can apply any classification algorithm to the data directly. Same as before, 

due to its good transparency, decision tree algorithm is employed to learn how best 

instances are identified. 

From the extensive numerical experiments in the Chapter 4, we noticed that the best 

data selected by GA based Instance Selection method only accounts for around 1% of the 

original training data sets, while in the small numerical example, the selected instances 

account for a little more than 20%. The intuitive reason for this difference appears to be 

that, in the small example, the total number of instances in the original training data is 

very small, only 45 records. The small number of selected instances will cause severe 

imbalance in the class attribute Selected. Traditional machine learning algorithms may be 

biased towards the majority class {Selected^'no") and thus, may predict the minority 

class examples (Selected^"yes") poorly. Therefore, oversampling is necessary to be 

performed to deal with this problem. 

Random oversampling resamples at random the minority class examples until their 

number is equal to the number of instances in the majority class. The supervised resample 

filter in Weka is employed here to perform this oversampling procedure. There is one 

parameter called biasToUniformClass, which represents the setting value for the bias 

towards a uniform class. A value of 0 leaves the class distribution as-is, a value of 1 

ensures the class distribution is uniform in the output data. Another parameter is the 

sampleSizePercentage, which represents the percentage rate of sample size versus the 

original data set. Through setting values for these two parameters, we can choose the bias 



www.manaraa.com

68 

degree to uniform class and sample size. 

After data reprocessing, oversampling, and applying decision tree algorithm, the 

predicting capability and performance of this tree model are analyzed. The predicting 

capability is that the capability to distinguish selected instances from those instances that 

are selected by Instance Selection method. Due to oversampling, many examples falling 

in minority class (Selected=yes) are sampled more than once. As a result, the accuracy is 

biased measure to analyze the performance of the tree model. Instead, Precision, Recall 

and Confusion Matrix are more suitable and meaningful measures for analysis in these 

situations. 

Using Relief? as an attribute evaluator and Ranker method provided in Weka, we 

generated the rank list of attributes and analyze which attributes are more important 

related to the decision process about whether a certain instance should be selected or not. 

The results are reported in the next sections. 

5.3 Numeric Example 

In Section 4.3.3, a numeric example with a small data set is employed to illustrate the 

application of the GA based instance selection methodology. There are forty-five 

instances totally in the original data set, shown in Table 4.3. After applying instance 

selection procedure, only ten instances are selected as shown in Table 5.1 (same as Table 

4.6). 

The training data set is reprocessed by adding the Distance attribute and new class 

attribute Selected. Distance attribute is numeric, which gives out the distance information 

between the two jobs involved in each instance in terms of their positions in the original 

scheduling sequence by EDD. The addition of this numeric attribute is motivated by the 

assumption that distances between jobs have some impact on instance selection. We will 

check this assumption through numerical experiments analysis. The new complete 

attributes list is shown below in Table 5.2. 



www.manaraa.com

69 

Table 5.1 Best instances selected by GA based Instance Selection approach 

Jobl Jobl Jobl Jobl Jobl 

Jobl R1 D1 Pi W1 Job2 R2 D2 P2 W2 Released Due PT Weight Scheduled 

First First Shorter Higher First 

1 2 24 7 5 5 3 25 6 3 yes yes no yes yes 

2 0 7 3 3 8 12 15 5 3 yes yes yes no yes 

3 15 10 4 1 4 5 36 18 3 no yes yes no yes 

3 15 10 4 1 7 8 11 12 3 no yes yes no no 

4 5 36 18 3 5 3 25 6 3 no no no no no 

4 5 36 18 3 6 7 20 2 1 yes no no yes yes 

4 5 36 18 3 8 12 15 5 3 yes no no no no 

6 7 20 2 1 10 6 39 17 7 no yes yes no no 

7 8 11 12 3 8 12 15 5 3 yes yes no no yes 

9 9 29 9 5 10 6 39 17 7 no yes yes no no 

Table 5.2 Complete attributes list in the reprocessed data set 

Attributes Name Type Definition 

J1 Numeric First Job's ID 

ReleaseTimel Numeric First Job's release time 

DueDatel Numeric First Job's due date 

ProcessingTimel Numeric First Job's processing time 

Weightl Numeric First Job's weight 

J2 Numeric Second Job's ID 

ReleaseTime2 Numeric Second Job's release time 

DueDate2 Numeric Second Job's due date 

ProcessingTime2 Numeric Second Job's processing time 

Weight2 Numeric Second Job's weight 

JIReleasedFirst Categorical {yes, no} 
If the first job is released earlier than the 

second job=> yes, otherwise =>no 

JIDuesFirst Categorical {yes, no} 
If the first job dues earlier than the second 

job=> yes, otherwise =>no 

JlProcessShorter Categorical {yes, no} 
If the first job's processing time is shorter than 

the second job=> yes, otherwise =>no 

JIWeightHigher Categorical {yes, no} 
If the first job's weight is higher than the second 

job=> yes, otherwise =>no 

JIScheduledFlrst Categorical {yes, no} 
If the first job is scheduled earlier than the 

second job=> yes, otherwise =>no 

Distance Categorical {yes, no} 
The distance between these two jobs 

according to their EDD scheduling sequence 

Selected (Class) Categorical {yes, no} 
If the first job is released earlier than the 

second job=> yes, otherwise =>no 



www.manaraa.com

70 

The new reprocessed training data set is shown below in Table 5.3. There are ten 

instances with "yes" in Selected class attribute, namely the instances with comparisons 

among the following job pairs: J1-J5, J2-J8, J3-J4, J3-J7, J4-J5, J4-J6, J4-J8, J6-J10, J7-J8, 

and J9-J10. Other instances are with "no" in Selected class attribute. Both second column 

and forth column are abbreviations of basic attributes about the two jobs: release time, 

due dates, processing time, and weights. 

Table 5.3 Reprocessed training data in small numeric example 

Jl Jl Jl Jl Jt 
J1 Rl-Wl J2 R2-W2 Released Dues Process Weight Scheduled Distance Selected 

First First Shorter Higher First 

1 2 no no no yes no 1 no 

1 3 yes no no yes yes 6 no 

1 4 yes yes yes yes yes 7 no 

1 5 yes yes no yes yes 5 yes 

1 6 yes no no yes yes 8 no 

9 no yes yes no no 1 yes 

The resample filter provided in Weka is employed to perform the oversampling 

procedure, which resamples at random the minority class (Selected ="yes") examples 

until the number is equal to the number of instances in the majority class (Selected -'no"). 

We choose to resample as the same number of instances as in the original data set, namely 

45. Before applying decision tree algorithm, we hold one third of these data is out for 

testing. The tree model after learning is shown below in Figure 5.1. 



www.manaraa.com

71 

\Vcight2 

<3 

Jobl RcleascdFirsl Distance 

<5 Yes No 

Release 1'iinel Jobl DuesFirst 

<9 
No Yes 

Release l ime I 

<3 

No 

No 

No 

No 

Yes Yes 

Yes 

Figure 5.1 Decision tree to learn class attribute Selected in the numerical example 

From the above tree model, we can generate the following rules: 

If Weight2<3 and Distanced5 and JoblDuesFirst, Then the instance is selected; 

If Weight2<3 and Distanced5 and Job2DuesFirst and ReleaseTimel>3, Then the 

instance is selected; 

If Weight >3 and Job2ReleasedFirst and ReleaseTime 1<9, Then the instance is 

selected; 

These rules give out the pattern how the instances are selected by the GA based 

Instance Selection method. The importance of Weight, Distance and DueDate or relevant 

comparison attribute is revealed by the tree model. This is consistent with the scheduling 

practice of EDD dispatching rule, in which weights and due dates are the most important 

attributes for making scheduling decisions. We will examine the importance of attributes 

through a different procedure (attribute selection methods using ReliefF attribute 

evaluator) later in this section. 

Now, the predicting capability and performance of this tree model needs to be 

addressed. The predicting capability is the capability to distinguish the instances selected 

by the instance selection method from other normal instances. Due to oversampling, 



www.manaraa.com

72 

many examples falling minority class (Selected-' yes") are sampled more than once. As a 

result, the accuracy is a biased measure to analyze the performance of the tree model. 

Therefore, Precision, Recall and Confusion Matrix are more meaningful and suitable 

measures for analysis instead. 

Table 5.4 Detailed accuracy by class in small numeric example 

TP Rate FP Rate Precision Recall F-Measure Class (Selected) 

0.875 0.125 0.875 0.875 0.875 yes 

0.875 0.125 0.875 0.875 0.875 no 

Table 5.5 Confusion matrix in small numeric example 

a b Class (Selected) 

7 1 a = yes 

1 7 b = no 

From the above tables about the detailed accuracy and confusion matrix, we can see 

that the precision and recall for both classes are the same, which indicate that, through 

oversampling, the tree model can predict minority class (Selected="yes") as well as 

majority class (Selected="no"). Thus, we can conclude that this tree model is able to 

distinguish minority class (Selectech"yes") well. 

Apart from applying decision tree algorithm to the data to learn how the instances are 

selected by GA based instance selection method; we also use ReliefF evaluator and 

Ranker method to analyze the attributes' relationship to the target concept. Similarly, 

oversampling is also a preceding process for attributes selection and analysis. In order to 

get more general results, ten-fold cross validation is employed to do attribute selection 

and the results are shown below in Table 5.6. We can see that Job 1 ReleasedFirst, Weight2, 

ReleaseTimel, and Distance are in the top five of the ranking list of all the attributes. 

Similar to the tree model after learning from the data, these four attributes are also the 

main attributes in the splitting nodes. 



www.manaraa.com

73 

Table 5.6 Attributes ranks by Relief? evaluator in small numeric example 

Rank Attribute 

1 
2 
3 
4 
5 

6 
7 

8 

9 
10 

11 

12 

13 
14 

Job 1 Re leasedF irst 

Weight2 

ReleaseTimel 
Weight 1 
Distance 

ReleaseTime2 
ProcessingTime2 

DueDate2 

DueDatel 
Job 1 WeightHigher 

ProcessingTimel 
JoblDuesFirst 

Job 1 ProcessTimeShorter 
JoblScheduleFirst 

Although JoblDuesFirst, which appears in the tree model, is not with higher rank in 

the above list, reveals the comparison between the two jobs in each instance. In fact, 

Duedatel and Duedate2 are ranked higher in the list, thus, the consistency between the 

attribute selection results and tree model still holds. In conclusion, jobs' weights, release 

time, distance, and due dates are most highly related to how to select instances by GA 

based instance selection method. Furthermore, we can conclude that it is an effective 

strategy to define the new target concept to determine whether the instance should be 

selected or not, to apply data mining directly to learn this concept, and then construct a 

robust predictive model which also with good descriptive capability. 

5.4 Numerical Experiment Results 

The example in section 5.3 illustrates the effective approach by defining new target 

concept, reprocessing data, applying data mining algorithm and analyzing results, to learn 

how GA based instance selection method select the best instances. In this section, we 

evaluate this approach more extensively using the data from the simulation experiments 

in Chapter 4. 



www.manaraa.com

74 

In each previous simulation experiment, one training data set and one test data set 

both with 200 jobs are created according to a certain set of parameter values of coefficient 

(Cv), tightness(7z), and means of release time, due date and processing time respectively. 

As a result, there are totally 18 experiments. In both training data and test data creation, 

the 200 jobs are dispatched according to EDD dispatching rule, and the scheduling 

performance measure considered is also Weighted Maximum Lateness (WLmax ). 

After performed GA based instance selection procedure, best instances are selected in 

each simulation experiment. We keep the record of these best instances selected and 

reprocess the training data set by adding new class attribute (Selected). For any instance 

in the training data set, if it is selected by the Instance Selection procedure, then the value 

for the class attribute Selected is "yes", otherwise is "no". Furthermore, the new attribute 

Distance is added in to the training data set, which represents the distance of two jobs in 

any instance according to their EDD scheduling sequence. This data reprocessing 

procedure is the same as illustrated in the numeric example explained in the previous 

section. 

The next step is to resample the training data to balance the classes. We first make the 

class distribution falls into exact uniform distribution, and keep the resample size as 50% 

of the original data set. Then decision tree algorithm is applied to the reprocessed data. 

This same experiment procedure is performed to all the 18 data sets, and the results of 

learning are shown in Table 5.8 below. The second column "Size (IS)" represents the size 

of best instances selected by GA based instance selection method. Tree size is measured 

by the total number of leaves in the decision tree model like before in Chapter 3 and 

Chapter 4. 

To avoid confounding of the experiment, when only apply decision tree C4.5 

algorithm to a sample of the original data, we need to reset the minimum split size to be 

the same percentage of the original value. For example, if the original value for minimum 

split size is 2, then the new value would be 1 if the resampling rate is 50%. 



www.manaraa.com

75 

Table 5.7 Size and detailed accuracy of decision tree models 

Data 
Set 

Size 
(Instance 
Selection) 

Tree 
Size Accuracy TP 

Rate 
FP 

Rate Precision Recall F-Measure Class 
(Selected) 

1 199 304 95.9% 
1 

0.917 

0.083 

0 

0.924 

1 

1 

0.917 

0.96 

0.957 

yes 

no 

2 98 177 97.7% 
1 

0.954 

0.046 

0 

0.956 

1 

1 

0.954 

0.978 

0.976 

yes 

no 

3 158 257 96.5% 
1 

0.929 

0.071 

0 

0.934 

1 

1 

0.929 

0.966 

0.963 

yes 

no 

4 79 141 98.2% 
1 

0.963 

0.037 

0 

0.965 

1 

1 

0.963 

0.982 

0.981 

yes 

no 

5 79 156 98.2% 
1 

0.964 

0.036 

0 

0.965 

1 

1 

0.964 

0.982 

0.982 

yes 

no 

6 79 145 98.3% 
1 

0.966 

0.034 

0 

0.967 

1 

1 

0.966 

0.983 

0.982 

yes 

no 

7 78 156 97.7% 
1 

0.955 

0.045 

0 

0.957 

1 

1 

0.955 

0.978 

0.977 

yes 

no 

8 157 249 96.8% 
1 

0.936 

0.064 

0 

0.94 

1 

1 

0.936 

0.969 

0.967 

yes 

no 

9 79 135 98.2% 
1 

0.963 

0.037 

0 

0.964 

1 

1 

0.963 

0.982 

0.981 

yes 

no 

10 79 147 98.3% 
1 

0.967 

0.033 

0 

0.968 

1 

1 

0.967 

0.984 

0.983 

yes 

no 

11 79 142 98.5% 
1 

0.969 

0.031 

0 

0.9745 

1 

1 

0.969 

0.985 

0.984 

yes 

no 

12 78 144 98.2% 
1 

0.963 

0.037 

0 

0.964 

1 

1 

0.963 

0.982 

0.981 

yes 

no 

13 79 151 98.3% 
1 

0.966 

0.034 

0 

0.967 

1 

1 

0.966 

0.983 

0.983 

yes 

no 

14 79 153 98.1% 
1 

0.962 

0.038 

0 

0.963 

1 

1 

0.962 

0.981 

0.98 

yes 

no 

15 79 141 98.2% 
1 

0.963 

0.037 

0 

0.964 

1 

1 

0.953 

0.982 

0.981 

yes 

no 

16 79 150 98.4% 
1 

0.968 

0.032 

0 

0.969 

1 

1 

0.968 

0.984 

0.984 

yes 

no 

17 79 151 98.2% 
1 

0.965 

0.035 

0 

0.966 

1 

1 

0.965 

0.983 

0.982 

yes 

no 

18 79 146 98.2% 
1 

0.963 

0.037 

0 

0.964 

1 

1 

0.963 

0.982 

0.981 

yes 

no 



www.manaraa.com

76 

From Table 5.7, we can see that in most experiments, 79 instances are selected from 

the original 19900 instances, only one case with 98 instances, two cases with 157 

instances, and another case with 199 instances. The relationship between the size of the 

decision tree model and the size of the best instances set selected by the GA based 

instance selection method is shown below in Figure 5.2. For those data sets with 78 or 79 

best instances selected, the size of the tree model is between 129 and 151. But as the size 

best instances set increases from 79, to 98, 157, 158 and 199, the size of the tree model 

also increases proportionally. This result is quite intuitive and reasonable, since when the 

best data set is larger, more information needs to be learned by the decision tree algorithm. 

As a result, the tree model after learning will be more complex comparable to situations 

when the best data set is small. 

300 
0) 
J 250 
0 
P 200 
H 
.1 150 
'5 
g 100 

O 
S 

V) 

78 78 79 79 79 79 79 79 79 79 79 79 79 79 98 157 158 199 

Size of Best Intances Set 

Figure 5.2 Size of the decision tree model as the function of the size of best instances set 

Figure 5.3 shows the relationship between accuracy of the decision tree model and 

the size of best data set. Generally, the accuracy of the decision tree models is not low: 

the average accuracy is 97.0% and the standard deviation is 1%. But we can see there is 

clear trend that as the best data set becomes larger, the accuracy of the tree models 

decreases. For the cases where best data size is about 79, the accuracy of the decision tree 

is pretty high, from 96.7% to 98.0%. But when the size best data increases, the accuracy 

of the tree model decreases: from 96.4% when the size of best data set is 98, to 93.6% 



www.manaraa.com

77 

when the size of the best data set is 199. 

CD 

o 99.0% 
2 
m 98.0% 

£ 97.0% 

§ 96.0% 

•5 95.0% 

• 
4 —• + 

Q 94.0% 

% 93.0% 

g 92.0% 

o 91.0% o 
< 

78 78 79 79 79 79 79 79 79 79 79 79 79 79 98 157 158 199 

Size of Best Instances Set 

Figure 5.3 Accuracy of the decision tree model as the function of the size of best 

instances set 

Apart from the accuracy analysis, the relationship between the F-Measure of decision 

tree models and the size of best data set is shown in Figure 5.4. The trends for both 

classes are similar: as the size of best data set increases, the F-Measure decreases for both 

classes, which are also very similar to the accuracy trends in Figure 5.3. The reason for 

this is that the resample size is kept same (50% of the original data set, namely 9950 

records), regardless to the change of the best data size. Those instances with minority 

class (Selected="yes") will be randomly oversampled a little over 100 times when the 

size of best data set is around 79. However, the instances with minority class 

(Selected-'yes") will be randomly oversampled about 50 times when the size of best data 

set is around 199. As a result, the decision tree algorithm will be more biased to predict 

minority class more accurately when the minority class is resmapled with higher rate, at 

the expense of predicting majority class less accurately, since the final accuracy of the 

model will be lower in this way. This can be testified by FP rate (false positive rate) 

information in the fifth column of Table 5.7. Best data set with smaller size (79) is with 

lower FP rate, which means smaller number of majority class incorrectly classified into 



www.manaraa.com

78 

minority class, comparable to the cases when best data set is with larger size (199). 

0.99 
0.98 
0.97 
0.96 

1 0.95 
0.94 
0.93 
0.92 
0.91 
0.9 

78 78 79 79 79 79 79 79 79 79 79 79 79 79 98 157158199 

Size of Best Instances Set 

Figure 5.4 F-Measure of decision tree model as the function of the size of best instances 

In the previous section, the experiments are performed when we resample data at 

50% of the original data. In this section, we change the resample size and analyze the 

impact of resample rate on the decision tree model performance. The numerical results 

are shown below in Table 5.8. Similarly to the previous experiments, we also reset the 

minimum split size with same percentage as resampling rate to avoid confounding of 

experiments. 

From the Table 5.8, it is clear that both the size and accuracy of the decision trees 

increases as the resample rate increases. This can be illustrated in a more clear way in 

Figure 5.5, Figure 5.6 and Figure 5.7. 

Selected^yes Soloctod=no 



www.manaraa.com

79 

Table 5.8 Detailed accuracy of tree models at different resample rates. 

Percentage 

(%) 

Tree 

Size 
Accuracy 

TP 

Rate 

FP 

Rate 
Precision Recall F-Measure 

Class 
(Selected) 

10 148 83.1% 
0.921 

0.747 
0.253 
0.079 

0.773 

0.91 

0.921 

0.747 

0.841 

0.82 

yes 

no 

20 231 90.7% 
0.985 

0.83 

0.17 

0.015 

0.849 

0.983 

0.985 

0.83 

0.912 

0.9 

yes 

no 

30 267 93.2% 
0.999 

0.865 

0.135 

0.001 

0.881 
0.998 

0.999 

0.865 

0.936 
0.927 

yes 

no 

40 276 95.4% 
1 

0.908 
0.092 

0 

0.916 
1 

1 
0.908 

0.956 

0.952 

yes 

no 

50 306 95.9% 
1 

0.917 
0.083 

0 

0.924 

1 
1 

0.917 

0.96 

0.957 

yes 

no 

60 327 96.5% 
1 

0.931 

0.069 

0 

0.935 

1 

1 

0.931 

0.967 

0.964 

yes 

no 

70 327 97.2% 
1 

0.945 
0.055 

0 

0.947 

1 

1 
0.945 

0.973 
0.972 

yes 

no 

80 346 97.3% 
1 

0.946 
0.054 

0 

0.949 

1 
1 

0.946 
0.974 
0.972 

yes 

no 

90 338 97.7% 
1 

0.955 
0.045 

0 

0.957 
1 

1 
0.955 

0.978 
0.977 

yes 

no 

100 345 97.8% 
1 

0.956 

0.044 

0 

0.958 

1 
1 

0.956 

0.979 

0.978 

yes 

no 

Figure 5.5 shows a positive relationship between the size of decision tree models and 

resample rate. Similarly, both Figure 5.6 and Figure 5.7 show positive relationship 

between the accuracy and the resample rate, and between F-Measure and resample rate. 

The reason for positive relationship between any measure of size, accuracy, and 

F-Measure and resample rate is quite intuitive: when the resample size is larger, more 

instances in both majority class and minority class are available for learning. 



www.manaraa.com

80 

400 
(1) 
N 

CO 300 
(1> 
CD 
H 200 
c 
o 
V) 

o 100 
(I) 
O 

0 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Resample Size 

Figure 5.5 Decision tree size as the function of the Resample size (Percentage of original 

data set) 

TJ O 
2 95% <D 
2 
H 90% 
o 

:e <D 
o 

85% 

80% 

5 75% 

§ 
< 70% 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Resample Size 

Figure 5.6 Decision tree accuracy as the function of the Resample size (Percentage of original 

data set) 

(D 

1 

0.95 

0.9 

| 0 85 

u- 0.8 

0.75 

0.7 

-+— Selected=yes —•— Selected=no 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Resample Size 

Figure 5.7 F-Measures as the function of the Resample size (Percentage of original data set) 



www.manaraa.com

81 

Through the above numerical experiments, we analyze size and accuracy of the 

models after apply decision tree algorithm, and the numerical results show that the 

models can distinguish those best data selected by instance selection procedure. In this 

section, we further perform attribute selection by using the Relief? attribute evaluator and 

Ranker method, in order to find out the most important attributes related to best data 

selection. The same eighteen data sets, used in previous experiments, are employed to 

conduct attribute evaluation, and the results are shown below in Table 5.9. 

Table 5.9 Top seven attributes selected by Relief? evaluator 

Data 

Set 
Top 7 Attributes 

1 DueDate2 ReleaseTime2 distance ReleaseTimel DueDatel Weightl Weight2 

2 Distance DueDatel Weightl DueDate2 Weight2 ReleaseTimel 

3 Distance ReleaseTime2 ReleaseTimel DueDate2 DueDatel Weightl 

4 Weightl distance ProcessingTime2 Weight2 Processingtimel DueDate2 

5 Weight2 distance Weightl Processingtimel DueDate2 DueDatel 

6 Distance Processingtime2 Weight2 DueDate2 Weightl DueDatel 

7 Distance Weight2 Weightl ReleaseTime2 ReleaseTimel DueDatel 

8 Distance ReleaseTimel ReleaseTime2 Weightl DueDate2 Weight2 

9 Distance Weight2 DueDate2 ReleaseTime2 DueDatel Weightl 

10 Distance Weight2 Processingtime2 Weightl Processingtimel DueDatel 

11 Distance Weightl Weight2 Processingtime2 Processingtimel DueDatel 

12 Distance Weight2 Processingtime2 Processingtimel Weightl DueDate2 

13 Distance Weight2 Weightl ReleaseTime2 Processingtime2 ReleaseTimel 

14 Distance Weightl Processingtimel ReleaseTimel Weight2 ReleaseTime2 

15 Distance ReleaseTime2 ReleaseTimel Weightl Weight2 Processingtime2 

16 

17 

Distance 

Distance 

Processingtimel Weight2 Weightl Processingtime2 ReleaseTime2 

Weight2 Processingtime2 Processingtimel ReleaseTime2 

18 Distance Processingtime2 Weight2 Processingtimel Weightl ReleaseTime2 

From the attributes evaluation results, we can see that Distance ranks top one in most 

experiments. This is consistent with the result from tree models: Distance is always 

located in the very upper splitting nodes. Therefore, we can conclude that Distance is 

indeed highly related to best data selection. Apart from Distance, Weight ranks within top 



www.manaraa.com

82 

three nearly all the time, which indicate it is another important factor in terms of best data 

selection decision. 

5.5 Summary and Discussion 

In this chapter, we propose a new approach to learn the knowledge about how best 

data are selected by GA based instance selection method. We use a simple example to 

illustrate this new approach: how to apply data mining to learn how best instances are 

selected. New objective target is defined as to learn to determine whether a certain 

instance is selected or not. New attribute Distance is created which reveal the distance 

between the two jobs in each instance based on their original position in the dispatched 

list by EDD dispatching rule. Before applying decision tree algorithm, resampling is 

performed to balance the classes. Based on the recall, precision and F-measure, we 

conclude that the decision tree models created perform well to distinguish those instances 

selected by GA based instance selection method from other normal instances. Attribute 

selection results show that weight, distance, due dates and release time are the most 

important factors in respect to whether a certain instance is selected or not, which is 

consistent with the results from decision model. 

More experiments are conducted to the data set used in Chapter 4. The extensive 

numerical results show that decision tree models are with good performances to learn the 

knowledge about the best data selection. Furthermore, we conclude that the larger the best 

data set, the larger size of the decision tree models, while the accuracy and F-Measures 

decrease if we keep the resample rate as the same. On the other hand, if we only change 

the resample rate, both size and accuracy of the decision models increase as we enlarge 

the resample size. Attributes selection results also reveal that Weight, Distance, Duedate 

are the most related factors in respect to best data selection, which is almost consistent to 

decision tree model where the attributes are in the most upper splitting nodes. 



www.manaraa.com

83 

6 CONCLUSION 

In this dissertation, we address the problem that whether it is possible to discover 

behind knowledge about implicit scheduling practices and then with this knowledge, 

scheduling practice could be improved. We proposed a new research framework for 

applying data mining in scheduling. Through numerical experiments, it is shown that this 

method allows us to apply data mining directly to scheduling data to learn how scheduling 

decision are made and new dispatching rules. Moreover, we investigate a further important 

problem whether scheduling practice could be improved using the knowledge discovered 

by data mining. A novel optimization-based instance selection method for scheduling is 

presented and is shown that the scheduling performance could be improved effectively 

through learning from the best data after instance selection. The major contributions of this 

dissertation are as follows: 

• Data mining for scheduling framework 

It is shown that the new framework for applying data mining in scheduling 

provide effective approach to build a predictive model, which can work as a 

new dispatching rule, and obtain previously unknown structural knowledge and 

insights about scheduling decision making process. The target concept and flat 

file format and creation are novel in scheduling context and universally 

applicable for different scheduling problems. It is this special and appropriate 

flat file format that enable to apply data mining to learn dispatching rules and 

scheduling functions, and thus, any background knowledge about the 

scheduling practice is not necessary to be known before we apply this approach. 

Moreover this approach is scalable to complex scheduling context and the main 

difference is that the flat file would be more complicated with more attributes. 

However, there is another issue that needs further research. Both in Chapter 3 and 

Chapter 4 we mention the dependency of instances of our flat files transformed from 

original dispatch lists. We did not analyze the effects of data dependency on the 

performance of induced models in our research context, but this is an important issue that 



www.manaraa.com

84 

needs more attentions and research in future. 

• Optimization based instance selection for scheduling 

The motivation of this approach is to only select those good quality instances 

for further learning, and such good instances represent optimal scheduling 

practice. We showed that the genetic algorithm based instance selection method 

is very effective to greatly improve the scheduling performance of model after 

learning from historical scheduling data. This method makes outstanding 

contribution to scheduling context, where it is very complex and almost 

impossible to capture all the aspects of the system. This is a universal method 

to build robust models which can work well as new dispatching rules. 

Furthermore, this instance selection method is universally applicable to other 

problems as long as the fitness function is changed according to the objectives 

of specific applications. In addition, only a very small number of instances are 

selected by this method, which indicate this method not only can improve the 

performance of the model through selecting the most critical data points, but 

also it can reduce the data size greatly for interpretation. 

• Apply data mining to best instances analysis 

We proposed to employ data mining back to identify the selected best instances 

by defining a new target concept, new attribute creation, and oversampling. It is 

shown that this approach is effective and also applicable to other problems and 

contexts. 

All of the research problems considered in this dissertation address important 

elements of applying data mining in scheduling and benefits of optimal instance selection 

methods. Some of the future research directions include: use real production data to 

research on effective methods to find out the insights behind why the selected instances 

are representing good or optimal scheduling practice. Because these insights are 



www.manaraa.com

85 

representation of implicit scheduling knowledge, and accordingly, this method will lead 

us a way to make critical implicit scheduling knowledge from implicit to explicit. As a 

result, good scheduling practice knowledge can be generalized as rules to improve 

scheduling decision making process. 



www.manaraa.com

86 

REFERENCES 

Aiolli, F. and Sperduti, A. (2004). Multiclass Classification with Multi-Prototype Support 

Vector Machines. Journal of Machine Learning Research. Vol(6), p817-850. 

Almuallim, H., and Dietterich, T., 1994, "Learning Boolean concepts in the presence of 

many irrelevant features", Artificial Intelligence, 69 (1-2), pp 279-305. 

Aytug, H., Bhattacharyya, S., Koehler, G., and Snowdon, J. (1994). A review of machine 

learning in scheduling. IEEE Transactions on Engineering Management 41(2), 

165-171. 

Bowden, R. and Bullington, S. (1996). Development of manufacturing control strategies 

using unsupervised machine learning. HE Transactions 28, 319-331. 

Chajewska, U., Getoor, L., Norman, J., and Shahar, Y. (1998). Utility elicitation as a 

classi- fication problem. In G. F. Cooper and S. Moral, editors, Proceedings of the 14th 

Conference on Uncertainty in AI (UAI-98), p 79-88. 

Chen, C.C. and Yih, Y. (1996). Identifying attributes for knowledge-based development 

in dynamic scheduling environments. International Journal of Production Research 

34(6), 1739-1755. 

Chu, Wei, and Ghahramani, Zoubin (2005). Preference learning with Gaussian processes. 

ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning, 

2005, pl37-144. 

Cohen, W., Schapire, R., and Y Singer (1999). Learning to order things. Journal of 

Artificial Intelligence Research, vol(10), p243-270. 

Deshpande, M. and G. Karypis (2002). Using conjunction of attribute values for 

classification. CIKM'02, Nov. 4-9, McLean, VA, 356-364. 

Fumkranz, J. (2002). Round robin classification. Journal of Machine Learning Research, 

Vol (2), p721-747. 

Fumkranz, Johannes, and Hullermeier, Eyke (2003). Pairwise preference learning and 

ranking. Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in 



www.manaraa.com

87 

Computer Science), v 2837, Machine Learning: ECML 2003, p 145-156. 

Geiger, C.D., R. Uzsoy, and H. Aytug (2003). Autonomous Learning of Effective 

Dispatch Policies for Flowshop Scheduling Problems. In Proceedings of the Industrial 

Engineering Research Conference (IERC'03). 

Gervasio, Melinda, Moffitt, Michael, Pollack, Martha, Taylor, Joseph, and Uribe, Tomas 

(2005). Active Preference Learning for Personalized Calendar Scheduling Assistance. 

Proceedings of the 10th international conference on Intelligent user interfaces, 

ISBN: 1-58113-894-6, Page: 90-97. 

Goldberg, D., Nichols, D., Oki, B., and Terry, D. (1998). Using collaborative filtering to 

weave and information tapestry. Communications of the ACM, vol(35) p61-70. 

Haddawy, V., Restificar, A., Geisler, B., and Miyamoto, J. (2003). Preference elicitation 

via theory refinement. Journal of Machine Learning Research. vol(4), p317-337. 

Hall, M.A., 1998, "Correlation-based feature selection for discrete and numeric class 

machine learning", in Proceedings of the Seventeenth International Conference on 

Machine Learning, Stanford University, CA. Morgan Kaufmann. 

Har-Peled, S., Roth, D., and Zimak, D. (2002). Constraint classification: A new approach 

to multiclass classifi-cation and ranking. Advances in Neural Information Processing 

Systems 15. 

Hestermann C. and M. Wolber. (1997). A comparison between Operations 

Research-models and real world scheduling problems. The European Conference on 

Intelligent Management Systems in Operations. University of Salford, U.K., 25-26 

March 1997. 

Jain, A.S. and Meeran, S. (1998). Job-shop scheduling using neural networks. 

International Journal of Production Research 36(5), 1249-1272. 

Japkowicz, N., (2000). The Class Imbalance Problem: Significance and Strategies. 

Proceedings of the 2000 International Conference on Artificial Intelligence 

(IC-AP2OOO): Special Track on Inductive Learning, (Las Vegas, Nevada). 



www.manaraa.com

88 

John, G., Kohavi, R., and Pfleger, K., 1994, "Irrelevant features and the subset selection 

problem", in Proceedings of the Eleventh International Conference on Machine 

Learning, pp 121-129, New Brunswick, NJ. Morgan Kaufmann. 

Kanet, J.J. and Adelsberger, H.H. (1987). Expert systems in production scheduling. 

European Journal of Operational Research 29, 51-59. 

Kautz, H. (1998). Recommender Systems: Papers from the AAAI Workshop, Menlo Park, 

CA, AAAI Press. Technical Report WS-98-08. 

Kim, C.-O., Min, H.-S., and Yih, Y. (1998). Integration of inductive learning and neural 

networks for multi-objective FMS scheduling. International Journal of Production 

Research 36(9), 2497-2509. 

Kira, K. and Rendell, L. (1992). A Practical Approach to Feature Selection. Proceedings. 

Ninth International Conference of Machine Learning, pp. 249-256. 

Kohavi, R. and John, G. H., 1997, "Wrappers for feature subset selection", Artificial 

Intelligence, Vol. 97, No. 1-2, pp 273-324. 

Kohavi, R. and Provost, F. (1998). Robust classification systems for imprecise 

environments. In Proceedings of the Fifteenth National Conference on Artificial 

Intelligence, 706-713. 

Koller, D. and Sahami, M., 1997, "Hierarchically classifying documents using very few 

words", in Proceedings of the International Conference on Machine Learning, pp 

170-178. 

Kononenko, I. (1994). Estimating Attributes: Analysis and Extensions of RELIEF. 

Proceedings of 1994 European Conference of Machine Learning, 1994. 

Kusiak, A. and Chen, M. (1988). Expert systems for planning and scheduling 

manufacturing systems. European Journal of Operational Research 34, 113-130. 

Law, A. and Kelton, W. (2000). Simulation Modeling and Analysis. McGraw-Hill 

Education - Europe. ISBN: 0071165371. 

Lee, C.-Y., Piramuthu, S., and Tsai, Y.-K. (1997). Job shop scheduling with a genetic 

algorithm and machine learning. International Journal of Production Research 35(4), 

1171-1191. 



www.manaraa.com

89 

Lesh, N. M.J. Zaki, and M Ogihara (1999). Mining features for sequence classification. In 

5th ACM SIGKDD International Conference on Knowledge Discovery and Data 

Mining. 

Lewis, D. and Gale, W. (1994). A sequential algorithm for training text classifiers. 

Proceedings of the 17th annual international ACM SIGIR conference on Research and 

development in information retrieval, p.3-12, July 03-06, Dublin, Ireland. 

Lewis, D. and Catlett, J. (1994). Heterogeneous uncertainty sampling for supervised 

Learning. Proceedings of the Eleventh International Conference of Machine Learning, 

(San Francisco, CA), pp. 148-156, Morgan Kaufmann. 

Li, D.-C. and She, I.-S. (1994). Using unsupervised learning technologies to induce 

scheduling knowledge for FMSs. International Journal of Production Research 32(9), 

2187-2199. 

Li, X. and Olafsson, S. (2005). Discovering dispatching rules using data mining. Journal 

of Scheduling. Vol. 8, Page. 515-527. 

Ling, C. and Li, C. (1998). Data Mining for Direct Marketing Problems and Solutions. 

Proceedings of the Fourth International Conference on Knowledge Discovery and Data 

Mining (KDD-98), (New York, NY), AAAI Press. 

Liu, R., and Setiono, R., 1996, solution", in Proceedings of the Thirteenth International 

Conference on Machine Learning, Morgan Kaufmann. 

Min, H.-S., Yih, Y., and Kim, C.-O. (1998). A competitive neural network approach to 

multi-objective FMS scheduling. International Journal of Production Research 36(7), 

1749-1765. 

Mitchell, T. (1997) Machine Learning.McGraw-Hill International Editions. ISBN 

0-07-042807-7. 

Nakasuka, S. and Yoshida, T. (1992). Dynamic scheduling system utilizing machine 

learning as a knowledge acquisition tool. International Journal of Production Research 

30(2), 411-431. 



www.manaraa.com

90 

Neville, J., Jensen, D., Friedland, L., and M. Hay. Learning relational probability trees. In 

Proceedings of the 9th ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining (KDD03), 2003. 

Noronha, S. and Sarma.,V. (1991). Knowledge-based approaches for scheduling 

problems: a survey. IEEE Transactions on Knowledge and Data Engineering 3(2), 

160-171. 

Pinedo, M. (1995). Scheduling: Theory, Algorithms and Systems. Prentice Hall. 

Piramuthu, S., Raman, N., and Shaw, M.J. (1994). Learning-based scheduling in a 

flexible manufacturing flow line. IEEE Transactions on Engineering Management 

41(2), 172-182. 

Piramuthu, S., Raman, N., Shaw, and M.J., Park, S. (1993). Integration of simulation 

modeling and inductive learning in an adaptive decision support system. Decision 

Support Systems 9, 127-142. 

Priore, P., Fuente, D., Gomez, A., and Puente, J. (2001). A review of machine learning in 

dynamic scheduling of flexible manufacturing systems. Artificial Intelligence for 

Engineering Design, Analysis and Manufacturing 15, 251-264. 

Quinlan, J.R. (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann, San 

Mateo, CA. 

Raman, B. and loerger, T., 2002, "Instance based filter for feature selection", Journal of 

Machine Learning Research 1-23. 

Shaw, M.J., Park, S., and Raman, N. (1992). Intelligent scheduling with machine learning 

capabilities: the induction of scheduling knowledge. HE Transactions 24(2), 156-168. 

Shaw, M.J. and Whinston, A.B. (1989). An artificial intelligence approach to the 

scheduling of flexible manufacturing systems. HE Transactions 21(2), 170-183. 

Wiers, V.C.S. (1997). A Review of the Applicability of OR and AI Scheduling 

Techniques in Practice. OMEGA - The International Journal of Management Science 

25(2), 145-153. 

Wu, S. and Olafsson, S. (2005). Optimal Instance Selection for Improved Decision Tree 

Induction. 



www.manaraa.com

91 

Yang, J. and Honavar, V. (1998). Feature subset selection using a genetic algorithm. In H. 

Motada and H. Liu (eds), Feature Selection, Construction, and Subset Selection: A 

Data Mining Perspective, Kluwer, New York. 


	2006
	Application of data mining in scheduling of single machine system
	Xiaonan Li
	Recommended Citation


	tmp.1410287394.pdf.iXgNp

